SISTEMAS LINEALES

Examen parcial, mayo 2012

1. (2.5 puntos) Sea x(t) una señal pasobajo con transformada de Fourier

$$X(\omega) = \begin{cases} A^2 - \omega^2 & |\omega| \le \frac{3\pi}{4} \\ 0 & |\omega| > \frac{3\pi}{4} \end{cases}$$

siendo A un número real positivo, y sea un sistema LTI con respuesta al impulso

$$h(t) = \sum_{n=-\infty}^{\infty} (-1)^n \delta(t-n)$$

- (a) Sin calcular la transformada inversa, indique si la señal x(t) cumple alguna de las siguientes propiedades: par, impar, real pura, imaginaria pura, hermítica, antihermítica o periódica. Explique si x(t) será una señal de potencia o de energía.
- (b) Estudie las siguientes propiedades del sistema: Memoria, causalidad, estabilidad, linealidad e invarianza temporal.
- (c) Calcule la salida y(t) para la entrada x(t).

Propiedad	Señal periódica	Coef. Serie de Fourier
	$\left. egin{array}{c} x(t) \\ y(t) \end{array} \right\} \mbox{Periodo } T \ (\omega_0 = \frac{2\pi}{T}) \end{array}$	$egin{aligned} a_k \ b_k \end{aligned}$
Linealidad	Ax(t) + By(t)	$Aa_k + Bb_k$
Desplazamiento temporal	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0}$
Desplazamiento en frecuencia	$e^{jM\omega_0 t}x(t)$	a_{k-M}
Conjugación	$x^*(t)$	a_{-k}^*
Escalado temporal	$x(\alpha t), \alpha > 0$	a_k
	Periódica con periodo T/α	
Convolución Periódica	$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplicación	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Diferenciación	$\frac{d}{dt}x(t)$	$jk\omega_0 a_k$
Integración	$\int_{-\infty}^{t} x(\tau) d\tau$ (Finita y periódica	$\left(\frac{1}{jk\omega_0}\right)a_k$
	sólo si $a_0 = 0$)	
Simetría Conjugada	x(t) real	$a_k = a_{-k}^*$
D-1:/ 1- D1		

Relación de Parseval

$$\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{-\infty}^{+\infty} |a_k|^2$$

Table 1: Propiedades de la Serie Continua de Fourier

Señal	Transformada de Fourier	Coef. serie de Fourier (si es periódica)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta(\omega - k\omega_o)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0 k \neq 1$
$\cos \omega_0 t$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	$a_k = 0 k \neq 1$ $a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{ con otro valor}$
$\sin \omega_0 t$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ con otro valor}$
1	$2\pi\delta(\omega)$	$a_0 = 1$ $a_k = 0 k \neq 0$
Onda cuadrada periódica		
	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\sin k\omega_0 T_1}{k\pi} = \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ para todo k
$\frac{x(t+T) = x(t)}{\sum_{n=-\infty}^{+\infty} \delta(t-nT)}$ $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	-
$\frac{\sin Wt}{\pi t}$	$X(\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	-
$\delta(t)$	1	-
$\frac{\delta(t)}{u(t)}$	$\frac{1}{i\omega} + \pi\delta(\omega)$	-
	$e^{-j\omega t_0}$	-
$\frac{\delta(t-t_0)}{e^{-at}u(t), \Re\{a\} > 0}$	$\frac{1}{a+j\omega}$	-
$te^{-at}u(t), \Re\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	-
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \Re\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	-

Table 2: Pares Básicos de Transformadas de Fourier

Propiedad	Señal Aperiódica	Transformada de Fourier
Linealidad	ax(t) + by(t)	$aX(\omega) + bY(\omega)$
Desplazamiento temporal	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Desplazamiento en frecuencia	$e^{j\omega_0 t}x(t)$	$X(\omega-\omega_0)$
Conjugación	$x^*(t)$	$X^*(-\omega)$
Inversión temporal	x(-t)	$X(-\omega)$
Escalado	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Convolución	x(t) * y(t)	$X(\omega)Y(\omega)$
Multiplicación	x(t)y(t)	$\frac{1}{2\pi}X(\omega)*Y(\omega)$
Diferenciación en tiempo	$\frac{d}{dt}x(t)$	$j\omega X(\omega)$
Integración	$ \frac{d}{dt}x(t) \int_{-\infty}^{t} x(\tau)d\tau $	$\frac{1}{i\omega}X(\omega) + \pi X(0)\delta(\omega)$
Diferenciación en frecuencia	tx(t)	$j\frac{d}{d\omega}X(\omega)$

Relación de Parseval

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$$

Table 3: Propiedades de la Transformada de Fourier