UNIVERSIDAD DE VALLADOLID

MAS:FER UNIVERSITARIO DE INVESTIGACION
EN TECNOLOGIAS DE LA INFORMACION Y LAS COMUNICACIONES

MEDICAL IMAGE FILTERING:
ENHANCEMENT AND RESTORATION

Ay

LABORATORIO DE
PROCESADO DE IMAGEN
Santiago Aja Fernandez

E.T.S.I. Telecomunicacién
Valladolid, Febrero 2020




MEDICAL IMAGE FILTERING: ENHANCEMENT AND
RESTORATION

Santiago Aja-Fernandez! and Ariel H. Curiale?

Y Universidad de Valladolid, ETSI Telecomunicacion, Valladolid, Spain
2CONICET, Medical Physics department, Centro Atémico Bariloche, Argentina.

1 Medical Imaging Filtering

The first thing to consider when dealing with filtering in medical imaging, regardless of the
modality, is that the data under consideration can incorporate very sensitive information. The
knowledge contained into the intensity pattern that conforms the image has not been acquired
with aesthetic purposes but with a clinical or research aim. Therefore, special care must be taken
not to eliminate or modified that information: no filtering procedure can be done with simple
artistic purposes. Although this premise is clearly shared by most medical imaging researchers,
it is sometimes left aside when validating new filtering schemes using visual comparison.

From a practical viewpoint, filtering in medical imaging must be conservative under the
following terms [2]:

1. No significant information present in the image must be erased of modified. For instance,
an aggressive filtering can eliminate small calcifications in a mammogram, which could be
a risk for diagnosis. In the same way, some filtering methodologies can alter the edges on
the image causing a distortion of objects’ sizes, which in the end may originate incorrect
volume or distance measures.

2. Keep all the information relevant to the physicians. In many occasions noisy patterns
have information useful for the expert. Before cleaning a specific area of the image, we
must ensure the visual role of noise in diagnosis. For instance, in ultrasound imaging,
very aggressive filtering that removes the speckle of the image can also remove valuable
information about the mobility of certain structures.

3. Do not add information. Filtering artifacts can appear as a side effect of certain techniques.
Sometimes these artifacts can be interpreted as anatomical features, and a false diagnosis
can be derived.

Thus, the rule of thumb would be “f you cannot keep all the important information, do not
filter”. Most of the approaches in literature are usually validated via spectacular visual results.
However, the success of a filtering procedure is not to produce good-looking pictures, but to
ensure that no relevant information is removed.

With this strong requirement in mind, the next step is to consider the final purpose of the
filtering of the data. Every proposal in literature will present some advantages and disadvan-
tages, and there is no suitable method for all purposes. Thus, the image processing has to be
done attending the utterly use of the filtered image. Let us consider some possible scenarios:



1. Visual quality: the purpose of the filtering is to improve its visual quality. The process-
ing must not only seek good-looking pictures, but to ease the visual understanding of the
data by an expert.

2. Further processing: the purpose is to improve the response of different algorithms
that will be used to extract information from the data. Note that, this time, the quality
of a filtering method is no longer related to the nice appearance of the images, but to
the improvement in the accuracy of the algorithms. Some significant applications are
segmentation, measure of geometrical distances and numerical processing.

We want to recall the importance of selecting a filtering method totally adapted to the
specific needs of the problem. There is no all-purpose filter that, with the same configuration
parameters could perform excellent in all situations. Sometimes, very simple filtering techniques
are enough for the requirements of the application.

In this chapter, the basic procedures to improve the quality of an image are reviewed. We
will make a distinction between image enhancement and restoration:

1. Image enhancement: the term gathers all those techniques that seek to (1) improve the
visual appearance of an image; or (2) transform the image to different shape more suited
to be analyzed. Image enhancement techniques do not assume an underlying model for
the image, and therefore their task is not to improve the fidelity to the original image.
Some examples of these techniques are contrast manipulation, histogram processing and
border detection,

2. Image restoration: is a process that seeks to estimate the original image that has been
degraded in the acquisition step. A degradation model is needed and it usually involves
blurring of the image and noise. Many different degradation models can be used, and they
differ among different modalities.

In this chapter, the first sections are devoted to image enhancement: Point to point oper-
ations; spatial operations and operations in Transform domain. The second part is focus on
image restoration and finally, some examples of medical imaging filtering techniques are given.

2 Point to point operations

Point to point operations are commonly used to enhance low contrast images as well as high
luminance images, but they are not only restricted to these tasks. In these operations, each
point (pixel or voxel) is modified according to a particular transformation, T, that only depends
on the image intensity at each point (Fig. 1). For example, in a 2D gray level image, I, the
enhanced image, I, is defined by the transformation, T', as follows:

I(x) = T(I(x)) (1)

where x corresponds to the spatial pixel location, x = (z,y), the image intensity belongs to
[0,---,L—1] and the enhancement image intensity is in the range of [0, --- , L' —1]. Tt is straight
forward to make an extension of Eq. (1) to color or higher dimensions.

Negative transformation, addition, subtraction, multiplication or division between images
are some of the most simple point to point operations and they are defined as follows:

e Negative image:

T(I(x)=(L—-1)—I(x), Ielo,---,L—1] 2)



e Addition, subtraction, multiplication and division:

T(L(x), I2(x)) = L(x)()a(x), () €{+ —*/} (3)

()

Figure 1: Schematic point to point transformation.

A color image is usually defined by three intensity levels. Each of these intensity levels
represents a color level defined in a specific color mode. The most used color models are RGB
(red, green and blue), YCM (yellow, cyan and magenta), HSL (hue, saturation and lightness)
or HSV (hue, saturation and value), however, they are not the only one. Color point to point
transformations can combine the color intensities, or they can be applied for each color. For
example, the following point to point operation, T, transforms an RGB image into a grayscale:

T =0,299R + 0,587G +0,114B (4)

where R, G and B represents the input image intensity for each of the RGB channels, and T
corresponds to the output image intensity. An example of this transformation can be seen in
Fig. 2 where it is shown also the negative of the gray scale image according to Eq. (2).

(a)

Figure 2: (a) Original mesenchymal stem cell (image courtesy of Dr. Diego Bustos, Cell Signal
Integration Lab. - IHEM CONICET UNCUYO, Mendoza, Argentina); (b) Gray scale image of
(a); (c) Negative of the grayscale image (b).

Contrast enhancement

In digital images, dynamic range refers to the ratio between the largest and smallest intensity
values, and it is commonly associated to the contrast in an image. When images with high
dynamic range are displayed on a monitor, the highest values dominate on the screen. This
effect produces that details around lower intensity values seem to be lost. This is because the



image intensity values are linearly scaled to a fixed number of bits when they are displayed, for
example 8 bits. To avoid this issue and allow us to better distinguish details on brightness or
darkness regions, a logarithm transformations can be applied to compress the dynamic range
as follows:

T(I1(x)) = cx*log(l+ I(x)) (5)

where c is a constant. As Figure 3 illustrates, cells cannot be easily distinguished on the dark
image (Fig. 3a). This image present a very high dynamic range, indeed, the intensity values
around the air bubble are extremely high compared with other pixels. So, it is quite difficult to
identify each cells. However, when a dynamic range compression is carried out, the stem cells
show up (Fig. 3b). Nevertheless, it can be seen that the image is still having low contrast. i.e.
image intensity values are too similar.

Figure 3: (a) Dark confocal microscopy of stem cells with high dynamic range; (b) Results of
using a log transformation; (c) Results of contrast stretching applied to image (b); (c) Results
of a threshold applied to image (b). (Original image courtesy of Dr. Diego Bustos, Cell Signal
Integration Lab. - IHEM CONICET UNCUYO, Mendoza, Argentina.)

Low contrast images could be acquired because of a poor illumination or lack of dynamic
range in the sensors, among others. Image normalization, also called contrast stretching, aims
to improve the contrast in an image by expanding a narrow range of input intensity values into
a wide (stretched) range of output intensity values (usually the full range of gray values). The
contrast stretching function in Fig. 4a is defined as follows:

—_

T(I(x)) = W (6)

where k controls the slope of the function and m corresponds to the intensity value where the
stretching will be performed. The result of applying this transformation is a high contrast image
as it can be seen in Fig. 3c. In the limit case Eq. (6) becomes just a threshold function (Fig. 4b),
and the output results in a binary image (see Fig. 3d).

Different contrast stretching functions can be used for contrast enhancement. However, one
of the most simplest is the piecewise linear function depicted in Fig. 4c. Piecewise transforma-
tions use different linear functions to modify the output intensity levels. In fact, a piece wise
transformation can be seen as a general contrast stretching transformation. The shape of the
transformation is controlled by the number of linear transformations used and its connections
points. Figure 4c shows a piecewise transformation where three lineal transformations are com-
bined in the points (r1,s1) and (re,s2). If 11 = s; and ro = s the piecewise transformation
reduces to a linear transformation and no change occurs in the image contrast. Also, if L = L'
there is no change at all in the image intensity. If r; = r9, sy = 0 and so = L' — 1, it is a
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Figure 4: (a) Contrast stretching transformation; (b) Threshold transformations; (c) Piece wise
transformation.
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threshold function. The following equation is used for performing the piecewise transformation
depicted in Fig. 4c:

tan(a) r 0<r<mnm
T(r)=4q tan(B)(r —r1) +s1 11 <7 <1 (7)
tan(@)(r —ra) +s2 re<r<L-—1

where tan(«) = s1/r1, tan(8) = (s2 —s1)/(ra —71) and tan(0) = (L' —1—s3)/(L—1—1r3). An
example of this transformation with r; = 5,7, = 100, 57 = 0, s = 200 can be seen in Fig. 5c.

Another useful family of gray level transformations is commonly named power-law transfor-
mations. Power-low transformations have the basic form

T(I(x)) = c(e+1(x))7 (8)

where ¢,y and € are constants; and € accounts for an offset. Offsets typically are an issue for
display calibration and they are normally avoided. So, equation (8) is simplified to T'(I(x)) =
cl(x)".

Many medical imaging devices used for image capturing and displaying, respond according
to non-linearity process. The luminance non-linearity introduced by these devices can often
describes according to a power law. The process used for correcting this phenomena is called
gamma correction. Images that are not properly corrected can look too dark. In addition to
gamma correction, power-law transformations are useful for general-purpose contrast manipu-
lation [6]. Figure 5b shows an example of a power-law transformation on a cardiac magnetic
resonance image with ¢ =1 and v = 0.6.

Histogram processing

In what follows we will describe some useful point to point operations based on modifying the
image histogram. A histogram is an accurate and simple way to estimate the probability density
function (PDF) for a random variable. It was first introduced by Karl Pearson in [11]. The
histogram of an image, I, with L gray levels (i.e. I(x) € [0,---,L — 1]) is a discrete function
h(rk) = ni that describes the relative frequency, ng, for a particular gray level intensity r. In
particular, if the histogram is normalized by dividing each of its values by the total number
of pixels/voxels in the image (i.e. ka_:lo h
particular gray level.

The histogram of an image is a powerful tool for describing basic gray-level characteristics
such as dark, light, low contrast, and high contrast, among others. Figure 6 shows the nor-
malized histogram for these four characteristic images. The vertical axis of each histograms

(rp) = 1), it gives an estimation that a pixel has a



Figure 5: (a) Original cardiac magnetic resonance imaging (image courtesy of Cardiac Atlas
Project); (b) The result of using a power-low transformation; (¢) The result of using a pice wise
transformation.

represents the relative number of pixel (it is normalized) with a particular gray level intensity.
Dark and bright image tends to have more pixels concentrated in the low and high gray scale
as the histogram shows in Fig. 6a and 6b. Thus, the histogram gives us information about the
spatial distribution of the gray levels in an image. Besides, it can also bring information about
the shape of this distribution. For example, the histogram of low-contrast images shows that
most of the pixels are in a narrow range of gray levels(Fig.6¢). On the contrary, they gray levels
in a high-contrast image tends to be spread into a wide range of gray levels (Fig.6d).
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Figure 6: (a) Dark cardiac magnetic resonance image; (b) Bright cardiac magnetic resonance
image; (c¢) Low-contrast cardiac magnetic resonance image; (c) High-contrast cardiac magnetic
resonance image. (Original image courtesy of Cardiac Atlas Project.)




Histogram equalization

Histogram equalization aims to find a transformation, 7', that properly distributes the input
image intensity where most frequent intensity levels will be assigned to new intensity levels
with higher dynamic range. In fact, the main goal of histogram equalization is to transform
the input image intensity in a such way that the intensity levels transformed will be uniformly
distributed. Hence, the image contrast is enhanced.

As it was introduced before, the image intensity level can be seen as a random variable in
the range of [0, L — 1]. Let p, be the PDF of a random variable = that represents the input
intensity level of an image. Now, let p, be the PDF of a random variable y € [0, L — 1] that
represents the output intensity level for a transformation y = T'(x) defined as the cumulative
distribution function (CDF):

y=T@ = (L-1) [ " palw)duw. )

It easy to prove that p,(y) ~ U[0,L — 1]. A basic result from probability theory is that,
if p,(x) and T(z) are known and T~ !(y) satisfy that it is single-valued and monotonically
increasing in the interval 0 <y < L — 1. Then, the PDF p,(y) is defined as:

Poy) = pala) fl‘z\ (10)
— o) j' ()

dx
= 2@ |y | = o0 vEO.L-1] (12)

dx
oY) ~ U0.L—1] (13)

where

) _ (1) pa(a). (14)

dx

It is important to note, that unlike its continuous counterpart, the discrete CDF

y=T(@) = (L-1)Y plj), j€0,L—1] (15)
§=0
where n
pz(x) = ﬁ, x € [0,L—1], (16)

cannot produce a discrete equivalent of a uniform probability density function, which would be
a uniform histogram. However, as we see in Fig. 7, the use of Eq. (15) does have the general
tendency of spreading the histogram of the input image which enhances the image contrast as
it is expected. Note that the CDF of the image equalized (i.e. histogram equalization), plotted
in red over the histogram in Fig. 7, is similar to a uniform distribution.

Histogram specification

Histogram equalization automatically determines a transformation that distributes the input
image intensity that has a uniform histogram. However, there are some applications in which
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Figure 7: Dark cardiac magnetic resonance image (left) and the result of a histogram equal-
ization (right) where the cumulative distribution function is plot in red over the histogram
(bottom). (Original image courtesy of Cardiac Atlas Project.)

attempting to perform such transformation is not the best approach for image enhancement. In
fact, we sometimes find useful to specify the shape of the histogram that we want to get. The
method used for this task is known as histogram specification or matching.

Using the same notation as it was introduced before, let p; be the PDF of a continuous
random variable x € [0,L — 1] that represents the image intensity level. Now, let p, the
specified PDF of another continuous random variable, z € [0, L — 1], that represents the desired
image intensity level. Suppose next that we define the transformation, y = T'(x), as the CDF
in a similar ways as it was done for histogram equalization:

y=T(x) = /0 " pu(w)duw. (17)

It is important to note that now y € [0, 1] instead of [0, L—1]. Then, we define the transformation
G(z) as the CDF of the p, as follows:

z
G(z) = / p. (w)dw, (18)
0
and the property of y = G(z) = T'(x). Therefore, z must satisfy the following condition:

2 =Gl y) =G H(T(x)). (19)



Assuming that G~! exists and it is singled-valued and monotonically increasing, it is possible
to transform the image gray levels from the original image to get an image according to the
specified probability density function p. by using G~! and 7. Note that the problem to find G~!
is considerably simplified for the discrete case. However, in this case, only an approximation
to the desired histogram is achieved. Since the gray levels in the image are integer, a simple
approach can be used to estimate 2 = G~'(y;). Indeed, a good approximation is obtained by
finding the smallest integer 2 € [0, L — 1] such that

(G(3)—yk) >0 k=0,...,.L—1. (20)

Figure 8 shows an example of the histogram specification approach (Fig. 8d) for a desired
p. (Fig. 8e plotted in red). In particular, this example shows that the histogram equalization
is not the best approach for improving the contrast (Fig. 8b). Furthermore, it shows that the
histogram specification avoid the saturation issue introduced when the histogram equalization
is performed.
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Figure 8: (a) Original confocal microscopy of stem cells; (b) Results of a histogram equalization;
(c) Histogram of (b); (d) Results of histogram specification according to the desired distribution
plotted in red on the image histogram (e); (f) Histogram of the specified histogram image.
(Original image courtesy of Dr. Diego Bustos, Cell Signal Integration Lab. - THEM CONICET
UNCUYO, Mendoza, Argentina.)
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3 Spatial operations

The term spatial operations, spatial transformations or spatial filtering refers to operations in
the image plane itself, i.e. operations based on direct manipulation of pixels in an image.
Approaches in this category commonly use information around the pixel to be transformed as it
is depicted in yellow in Fig. 9. This neighborhood is commonly called mask, filter or kernel, and
their values are referred to coefficients. Following the same notation that we have introduced in
point to point operations, each point (pixel or voxel) in the input image is transformed according
to a spatial transformation, 7', that takes into account the information of the point and their
neighborhood according to the values defined in the filter or kernel as follows:

I(x) = T(I(x),I(k)), (21)

where I(x) is the intensity level of the point x, and I(k) corresponds to the intensity levels of
the points in the neighborhood of x spatially defined by the kernel k.

7()

Figure 9: Schematic spatial transformation.

Most of the spatial operations discussed in this section can be formulate as linear operations
between the input image and the kernel k as follows:

N
I(x) =I(x)wo+ > I(x+ki))w (22)
=1

where wqy corresponds to the central coefficient of the kernel, and k; represents the relative
spatial kernel position for the coefficient w; when the pixel x is located at the center(see Fig. 9
for a 2D example). Eq. (22) can be rewritten for an image I of size M x N with a filter mask
of size m x n as follows:

a b
Hzy) =D > wii, )z +iy+j) (23)

i=—a j=—b

with z € [0,M — 1],y € [0,N — 1], a = (m —1)/2 and b = (n — 1)/2. An example of a 3 x 3
filter mask is depicted in Fig. 10.

As it will be discussed in Section 4, linear spatial filtering often is referred to as convolving a
mask with an image due to its similarities to the frequency domain concept called convolution.
In this way, filter mask are sometimes called convolution mask or convolution kernel.

Regarding to implementation details, it is important to think what happens when the center
of the filter approaches to the borders of the images. When the convolution mask reaches the
image borders one possible consideration is to restrict the center of the mask to be a distance
no less than (n-1)/2 where n is the mask size in the dimension of the border that is reached.

10
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Figure 10: 3 x 3 filter mask.

The resulting image will be smaller than the original, but the processed pixels will have been
computed with the full mask. Other possible solutions are to complete the pixels outside the
image with 0, or repeating the value in the border among others. These operation are commonly
named padding. Most of the times the best option relies completely on the problem to solve
and the filter to use. For example, on most of linear spatial operations, the zero-padding seems
to be a proper way to deal with this issue. However, for the median nonlinear filter, using a
zero-padding approach can introduce undesired effected on the borders.

In what follows we will introduce some of the most common spatial operations used for
smoothing, border detection and sharpening. Furthermore, we will describe some nonlinear
spatial transformation for similar purposes.

Smoothing filters

Smoothing spatial operations or filters are specially designed to smooth the data with the aim of
removing small details on it. These operations are commonly used in image processing for object
detection or noise reduction. The mean filter is the most intuitive and simplest smoothing filter
for smoothing images. This filter consists of assigning for each point in the image the average
value of the intensity levels in the neighborhood. Figure 11 shows the effects of the mean filter
smoothing for a brain and its corrupted magnetic resonance image with a white noise! by using
a squared mask of 5 x 5 as follows

11111

1 11111
k=—11 111 1
25 11111
11111

In addition, Fig. 11e show that the mean filter is specially efficient for removing white noise
(Fig. 11d). However, it tends to lose small details as it is shown in Fig. 11f. According to
Eq. (22), this filter can be rewritten as follows

1 25
I(x) = o Z I(x+k;). (24)

This formulation leads to a computationally more efficient algorithm avoiding to perform extra
multiplications/divisions. Indeed, it requires just one multiplication/division for each pixel.

It is important to note, that all the coefficients in the mean filter contribute in the same way
to the result. This filter tends to remove or reduce noise, however, it also tends to remove small
object or details in the image which could be an undesired effect. This leads to a variation of the

!details on noise models can be found in Section 5

11



(f)

Figure 11: (a) Original brain magnetic resonance image; (b) Results of smoothing the image
(a) with a squared mask of 5 x 5; (c) Differences between (a) and (b); (d) Original image (a)
corrupted by a withe noise; (e) Results of smoothing the noisy image (d) with a squared mask
of 5 x 5. (f) Differences between the original image (a) and the smoothed noise image (e).
(Original image courtesy of Hospital Clinico Universitario de Valladolid, Spain.)

previous filter which is named weighted mean filter, where in this case, not all the pixels in the
neighborhood contribute to the result in the same way. For example, a possible implementation
can be done by using a convolution mask as follows

YRS
16 111
where the contribution of the central pixel is eight times higher than the others. A special
case of weighted mean operator is the Gaussian smoothing where the kernel is defined by the

Gaussian function . Tet
f(x) = exp(—3(x —p) X7 (x — p)) (25)

CaEb]
where p and 3 correspond to the multidimensional mean and the covariance matrix respectively.
In fact, if dimensions are uncorrelated (i.e. ¥ is diagonal), the Gaussian filter can be generated
from only 1D Gaussian filter. Furthermore, the kernel should be carefully designed to include
at least 20 (or 30) of the distribution values. In this sense, its size must increase with increasing
o to maintain the Gaussian nature of the filter. Figure. 12 shows an example of a 2D Gaussian
convolution kernel with p, = puy, = 0 and 0, = 0, = 1 where 30 of the distribution values are

12



included. Additionally, results of applying a 2D Gaussian smoothing filter for different isotropic
o € [1,2,4] are depicted in Fig. 13.

~0.025
~0.020
~0.015
=0.010

~0.005

Figure 12: Example of 2D Gaussian kernel p, = y, =0 and o, = o, = 1.

Highlighting borders and small details

The principal objective of the spatial filters described in this section is to highlight the bound-
aries of objects and small details on images. Thus, they can be seen as opposite spatial op-
erations to those described for smoothing. In particular, these filter are based on first- and
second-order derivatives, specially the gradient and Laplacian

Vi) - ngxnwig?> (26)

Al(x) = V2I(x)=V-VI(x)=

"L 0% (x)
(92.%'2'

)

where x € R,

The derivatives of an image are defined in terms of differences and they provide an easy
way to identify where the image intensity presents a high variation. A possible definition of the
first-order derivative in 2D image, not the only one, is

TEYD — fat1,9) - 1) (28)
af(;y,y) = I(z,y+1)—I(z,y). (29)

There are different convolutions mask that implement Eq. (28) and (29), but the most well
known are the Prewitt, Roberts and Sobel (Fig. 14).
Similarly, we define the second-order derivative as

2I(z + —
%I (z —
I(yzvy) = I(z,y+1)—2I(z,y) + I(x,y — 1). (31)

In this way, the Laplacian (Eq. (27)) of an image can be computed by using one of the convo-
lutions mask described in Fig. 15.

13



Figure 13: Results of applying a Gaussian smoothing filter to a chest X-ray image (upper left)

for different isotropic o € [1,2,4]. (Original image courtesy of Hospital Universitario UNCUYO,
Mendoza, Argentina.)
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(e

Figure 14: Different mask used for the computation of the gradient vector in 2D. (a-b) Partial
derivatives; (c-d) Roberts operators; (e-f) Prewitt kernel filters; (g-h) Sobel convolution masks.

(h

~—

The principal objective of border detection is to highlight transitions between objects bound-
aries in the image. A simple way to highlight this transitions is by using the magnitude of a
first-order derivative as it is shown in Fig. 16b. In the same way, to highlight small details in

14
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Figure 15: Laplacian masks with (c-d) and without (a-b) diagonal elements.

the image (Fig. 17c) it is common to add a second-order derivative, such as the Laplacian, to
the original image as follows:

I(x) = {I (x) — ¢ V2I(x) if the center coefficient of the Laplacian mask is negative (32)

I(x) + V2 (x) if the center coefficient of the Laplacian mask is positive

where the sharpening effect is controlled by the constant ¢. Another option to highlight small
details in images is known as hihgh-boost filtering, and it is defined by using a blurred version
of the original image, I, as follows:

(33)

Figure 16: (a) Original brain magnetic resonance image; (b) Sobel gradient of (a). (Original
image courtesy of Hospital Clinico Universitario de Valladolid, Spain.)

Nonlinear filters

Nonlinear spatial filters such as max, min, median or variance filters also operates on a neigh-
borhood, and the mechanism of sliding a mask over the image is the same. However, the
transformation, 7', applied to a pixel using the information of its neighborhood cannot be de-
scribed just as a weighted sum over the filter coefficients, or convolution, as it was done in
Eq. (22).

Median Filter

The transformation, T', that defines the median filter, sorts the intensity values of the pixels
in the neighborhood and replace its intensity with the one that corresponds to higher half of
the intensity in the neighborhood. In particular, median filter is a powerful tool for noise and
speckle reduction. In contrast to smoothing filters, median filter preserve the border in the
image. as it can be seen in Fig. 19.

15
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Figure 17: (a) Original brain magnetic resonance image (courtesy of Hospital Clinico Universi-
tario de Valladolid, Spain.); (c) Laplacian of (a); (¢) Sharpening of (a).

neighborhood

2 2 2 smen (14

111
211 1\median 1

Figure 18: Example of median filtering in a 3 x 3 neighborhood compared to a mean filter of
the same area.

We define the median filtering as
Ivep () = median, ;I (x) (34)

where 7(x) is a centered neighborhood. Assuming a P x P window, the median filter works as
follows:

1. The P? values of the pixels in the neighborhood are extracted.

2. Those values are ordered.

3. The output of the filter correspond to the value placed in the % position.
An example the filtering of one particular neighborhood is depicted in Fig. 18 and in Fig. 19,
and compared to the result of a linear mean filter. This particular example illustrates one of the
distinct features of the median filter: the output value is one of the values already present in
the image. This effect has two advantages: first, no new values are introduced into the image;
second, there is no smooth or blur of edges.

One of the main drawbacks of the median filter is its computational cost, with the number
of operations growing exponentially with the size of the window. An alternative would be the
so-called pseudomedian filter [13]. If {My} is a sequence of elements my,ma, -+, my, the
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Figure 19: (a) Four chamber cardiac ultrasound image; (c) Gaussian smoothing filter; (c)
Median filter. (Original image courtesy of Dr. T. Perez Sanz, Rio Hortega, Valladolid, Spain.)

pseudomedian of the sequence is defined as

maximim{ My} + minimax{ My}

pmed{ My} = 5 (35)
where
maximin{ My} = max{min(my,---,myg), min(ma,---,mr41),
c,min(my—r4+1, -+ ,mnN)}
and
minimax{My} = min{max(mq,---,myr), max(ma,- -, mry1),
©,max(my—rL41,- MmN},

with L = (N + 1)/2.

4 Operations in Transform Domain

Most of the operations previously introduced can be carried out in transform domains, alterna-
tively to the presented spatial domain. As seen in the previous chapter, there is an equivalence
between convolution in the spatial domain and multiplication of the F'T of the signals.

4.1 Linear filters in frequency domains

The linear processing of an image using a kernel, as described in eq. (22) can be written as a
convolution, using the notation of the previous chapter:

I(z,y) = I(z,y) * h(z,y).
where h(x,y) is the convolution kernel. If continuous signals are assumed, the Fourier transform
of the convolution is carried out by the product of every term:

I(u,v) = I(u,v) - H(u,v) (36)
However, in practical situations in which images are limited and discrete, and the DFT is used,
the equivalent of this operation in the frequency domain implicitly assumes a periodic expansion
of the signal, an LCI system and a circular convolution:

I(z,y) = I(z,y) ® h(z,y).
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According to the previous chapter, the DFT of this convolution
Ik1, ko) = I[k1, ko] - Hk1, ko). (37)

where Hk1, ko] is the DFT of h(x,y).

4.2 Homomorphic processing

A very useful enhancement scheme can result from considering the image as the product of two
components:

flx) =i(x) - r(z) (38)
where i(x) is the illumination component and r(x) the reflectance. The illumination is related
to the shades and lights within the image while the reflectance is related to the objects in the
image, i.e. the transitions and border. As a consequence, i(x) is a low-pass signal and r(x) is
a high pass signal.

The separation and subsequent equalization of both sources may produce very different
results, being the main purpose the correction of uneven illumination in the scene. In medical
imaging this is particularly important in some modalities, like radiography.

In order to decouple both components, the logarithm is taken:

log f(x) = logi(x) + logr(x). (39)

This way, a simple linear filering may separate one of the components in order to process
differently each channel. As an example, in Fig. 20 a scheme for local contrast enhancement
is presented. Homomorphic processing is also used to separate multiplicative noise from the
original signal.

<1
. logi(x) “

£(0)— 108 exp |--g(x)
e | 1087(X)

s>1

Figure 20: Example of homomorphic processing: local contrast enhancement scheme.

5 Model-based filtering: Image restoration

Image restoration aims to improve the image when for some reason it has been degraded. This
degradation can occurs for multiple reasons, but noise and blurring are the most common causes.
The emission and detection of light and all other types of electromagnetic or ultrasonic waves are
stochastic processes by nature. In this sense, noise is inherent to the images acquisition process,
and it refers to the image intensity level variation for a particular spatial position. Besides
the noise introduced in the acquisition process, images are also corrupted during transmission
mainly due to the interference in the channel used in the transmission process, such as wired
and wireless networks. To measure the power of the noise in the image, an important measure
from signal theory, the signal-to-noise ratio (SNR) is used. In particular, if this ratio is to small
it means that the noise level is high compared with the image intensity, and the meaningful
information will be lost in the noise.
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On the other hand, blurring can be produced in medical image by different causes such as
patient motion or those related to the image acquisition/reconstruction. For example, multiples
echos in magnetic resonance or scattered radiation in computed tomography. A simplify general
model (Fig. 21) that takes into account the noise and image degradation present in the observed
image, I, can be modeled as:

I(x) = g(x) +n(x) (40)

where 7 corresponds to the noise model. The image formation process, g, is modeled by a linear
and space invariant system where its impulse response, h, is convolved with the original image
f as follows:

9(x) = h(x) * f(x). (41)
Additionally, the noise model, n could be signal dependen or independent (n1 # 0 vs. 1 = 0)
n(x) = g(x) x nu(x) + m2(x). (42)

where 11 and 72 are two particular noise probability density function. The reader is referred
to [7] for more details on a possible generalization of an image observation model.

Figure 21: Simplify image degradation model.

Depending on the image acquisition process and transmission system used for imaging the
body, Eq. (40)-(42) can be simplify by only considering 7; or 7 as follows

I(x) = g(x)+n (Signal independent noise model) (43)
I(x) = g(x)+g(x)xn (Signal dependent noise model), (44)

where I refers to the observed image, g corresponds to the detected image, and 7 is a particular
noise probability density function.

Noise models

The most common noise models in computer vision and medical images are photon noise, white
noise, salt & pepper, Rayleigh and Gamma among others. The photon noise degradation refers
to the inherent variation of photons collected by a digital sensor over a given time interval.
This intensity variation is usually modeled as signal dependent (Eq. (44)) with a Possion PDF.
However, in computer vision a widespread approximation is to model with a white noise, i.e.
by modeling the image noise as signal independent (Eq. (43)) with a zero-mean Gaussian PDF
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(Table 1). Additionally, withe noise also arises in an image due to factors such as electronic
circuit noise. The impulse noise, also called salt & pepper, is often used for modeling malfunc-
tioning of sensor cells, memory cell failure, or synchronization errors in the image digitalization
or transmission, for example. Impulsive noise has only two possible intensity level, ¢ and b
(Table 1). If b > a, gray level b will appear as light dot in the image. Conversely, a gray level
will appears as a dark dot. For an 8 bit/pixel image, the typical intensity values for a (pepper
noise) is close to 0 and for b (salt noise) is close to 255 [6].

Ultrasound, synthetic aperture radar and optical coherence tomography are images with a
particular granular pattern named speckle. This patter is generated by the reflection of trans-
mitted coherent waves at fixed frequencies, as it happens in ultrasound waves. In ultrasound
systems, as many others, the result of the interaction between those waves and different types
of tissues give rise to the interference phenomenon known as speckle. This interference pattern,
though it is textured with noisy visual aspect, remains unaltered under the same acquisition
conditions [4], i.e. the same transducer aperture, pulse length and transducer angle. This be-
havior exhibits an inherent relationship with the tissue structure and it is commonly modeled
as signal dependent (Eq. (44)) with a Rayleigh or Gamma PDF (Table 1). Figure 22 shows
images and histogram resulting from adding some of the degradation model described before.

PDF Mean Variance
Gaussian p(z) = 217m(3_(z_“)2/2"2 L o?
A ifa<z<b
Uniform p(z) =< b—@ na= Z - (a+10)/2 (a+b)2/12
0 otherwise
Exponential p(z) =ae % z>a 1/a 1/a?
Rayleigh p(z) = 2(z — a)e b o> | a+ \/7b/d b(4 —m)/4
Gamma p(z) = ‘zz_b;)? e z>a b/a b/a?
P, z=ua
Impulsive (salt & pepper) | p(z) =< P, z=b
0  otherwise

Table 1: Different common noise probability density functions (PDF). The random variable, z
represents the noise intensity (gray) level.

Restoration process

Most of the approaches used throughout this chapter for image restoration assume that the
degradation on the image, also known as point spread function, can be modeled as linear and
invariant space filter as it was described in Eq. (40)

I(x) = h(x) = f(x) + n(x). (45)
Convolutions in the space domain correspond to multiplications in the frequency domain as
it was introduced in section 4. So, Eq. (45) can be rewritten in the frequency domain as follows:

FxlI(x)](w) = H(w) F(w) + N(w) (46)
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(a) (b) () (d) ()

Figure 22: Images and histogram resulting from adding a signal independent Gaussian (b),
uniform (c), impulsive (d), and a signal dependent Gamma (e) noise to a synthetic brain imaging

().

Gray level intensity Gray level intensity Gray level intensity

where each term in capital letter are the Fourier transform of the corresponding terms described
before. These two equations settle down the bases of image restoration for linear space-invariant
systems.

Image restoration only in presence of noise

In what follows, we assume that we only deal with degradation due to noise, i.e. the impulse
response of the point spread function in the frequency domain, H, is the identity operator
(Eq. 46). Figure 23 shows the noise reduction results for the arithmetic mean filter

o) = S IGs,0) (47)

(s,t)ESzy

the geometric mean filter

iy =| I 2s=v| . (48)

(5,6)ESzy

and the harmonic mean filter
. mn

I(:I"vy) =

S 1 (49)
(s,t)ESzy I(s,t)
where S, represents the set of spatial coordinates for the noisy image, I(x,y), in a window of
m X n.

In particular, geometric and harmonic mean filters are better than arithmetic mean filter
for removing white noise because they preserve more fine details on the image. However, they
tend to fail for removing impulsive salt & pepper noise (Fig. 24). In this case, median, min
and max nonlinear filters are better options for noise reduction. Indeed, median filter presents
a remarkable performance for impulsive noise reduction (Fig. 24c). Furthermore, median, max
and min filters tend to preserve image borders as it was described before.
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(a) (b) () (d)

Figure 23: Results of noise reduction by using an arithmetic (b), geometric (¢) and harmonic
(d) mean filter for a synthetic MRI brain image corrupted with a withe noise (a).

(a) o (b) (©)

Figure 24: Results of noise reduction by using an arithmetic mean (b) and median (c) filter for
a synthetic MRI brain image corrupted with an impulsive salt & pepper noise (a).

6 Some examples of filtering techniques

In this final section we will show some examples with popular filtering schemes and their appli-
cation to specific noise models.

6.1 Linear minimum mean square estimator

One simple and powerful way to estimate the original signal when it is corrupted with noise is
using a statistical estimator, like the Linear Minimum Mean Square Error (LMMSE) estimator
[8]. The general formulation of the LMMSE of a parameter # in the presence of noise is defined

0 = E{0} + CypsC (s — E{s}) (50)

being s the vector of available samples, Cgs the covariance matrix of s and Cgyg the cross-
covariance vector. When assuming a simple degradation model of signal f(x) corrupted by
additive Gaussian noise,

I(x) = f(x) +1(x;0,07),

the LMMSE estimator becomes a simple version of the adaptive Wiener filter [9]

7 Var(f(x))

F) = BUIOOY+ S 7y 16) — EIGO)). (51)
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A practical implementation of this estimator is achieved using local sample moments:

Fx) — (I(x (IP(%))x — (I(x))} —0®
f(x) = (I(x)x + (X)) — U(x))2

where (.)x denotes the local mean estimator defined as:
(I(x))x = I(x) * h(x). (53)

The term h(x) is a low pass filter, as previously defined.
When doing the expansion to cope with MRI data, we can adopt different noise models,
being the Rician the most common:

(I(x) = (I(x))x) (52)

I(x) = |f(x) +m (x;0,0%) + 4. x 72 (x;0,07) |,

where 71 (x) and 72(x) are the real and imaginary parts of a complex additive Gaussian noise
process. Since the moments of the Rician distribution have a non-trivial integral expression but
for even-order moments, in order to achieve a closed-form expression, the estimator was defined
for the square signal f2(x) instead of f(x). The LMMSE for this case becomes [1]

P2(x) = B{f* (%)} + Cpap2(x)CRl (%) (P(x) — B{(x)}) (54)

The practical implementation of this estimator with local moments local sample moments be-
comes -

F2(x) = (I(x))x — 20% + K (x) (I*(x) — (I*(x))x) (55)
with K (x)
40? ((I*(x))x — 0?)

K(x)=1- (56)

(I (x)x = (FP(x))%

Figure 25: Example filtering techniques over a 77 MRI synthetic image. (a) Original image;
(b) Image corrupted with Rician noise (o = 20); (¢) LMMSE estimator for Rician noise; (d)
Unbiased NLM.

One example of filtering can be found in Fig. 25 for a synthetic image. The filter may show
a low visual filtering capability but note that it is a conservative scheme: it does not eliminate
relevant information of the signal together with the noise. As a result, visual results are always
less appealing than other methods, since it keeps some of the noise. As a counterpart, relevant
information is not removed.
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6.2 Non-local Means schemes

The non-local means (NLM) scheme was firstly described in [3] to denoise 2D natural images
corrupted by an additive white Gaussian noise. This methodology is currently very popular
due to its excellent visual performance. NLM is a non-linear filter based on a weighted average
of pixels inside a search window that is relatively large compared to traditional neighborhood
techniques. The structure of the image is preserved by applying an adaptive weight according
to a similarity measure (usually the mean squared difference for natural images).

In its original formulation, the output of a NLM filter is computed as follows [3]:

Inm(x) = > w(x, y)I(y) (57)

yeQ
where w is a set of weights computed as:

wlxy) = oo (10 260 = 3 exp (-2 %)

yeEN

h is a parameter related to the noise power in the image and d(x,y) is a distance between the
voxels at positions p and ¢g. Instead of using a geometrical distance, NLM uses a distance in
the domain of the gray levels of the image, defined as:

d(x,y) = (I(Nx) = INy)" G, (T(Nx) = Ti(AG)) (59)

where I(Nx) and I(Ny) are column vectors containing the gray values of the voxels in the
neighborhoods Ny and Ny, of voxels x and y respectively. G, is a matrix that accounts for a
Gaussian weighting that gives a higher weight to the voxels of the neighborhood closer to the
central voxel.

The computational cost associated to eq. (57) is prohibitive, so the domain  is usually
substituted by a neighborhood N of voxel x. Besides, it is proposed in [10] to change the
weight w(x,x) in eq. (58) by the maximum of w(x,y) with x # y, to avoid over-weighting the
central voxel of V. A similar procedure is applied to the central coefficient of G,. One example
of filtering of the this scheme for MRI can be found in Fig. 25.

6.3 Anisotropic diffusion filters

-

7

(a) 150 iter.

P

(b) 300 iter.

(c) 500 iter. (d) 1000 iter.

Figure 26: Example of anisotropic diffusion filter for a noisy synthetic image. A small step
is considered, so the diffusion takes place slowly. The synthetic nature of the image favor the
goodness of the result.
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(a) Original (b) 100 iter.

Figure 27: Example of anisotropic diffusion filter for a real image: a radiography of hand and
wrist.

There is a huge family of filtering techniques based of Partial Differential Equations (PDEs).
Among them, the most well-known is the so-called anisotropic diffusion (AD) filtering. The
cornerstone in AD is the heat diffusion equation [14]:

0I(x,t)
ot

where a noisy image I(x) feeds the PDE with initial condition I(x,¢ = 0) = I(x) and the
temporal evolution is represented by variable ¢ . Such a temporal evolution is governed by the
divergence and gradient operator, denoted by div and V respectively, and importantly, by D, a
symmetric positive definite tensor that depends on the local structure of the filtered image at
time ¢, that is, I(x,t). When D becomes a tensor of order zero, i.e., a scalar function, the filter
is usually termed as isotropic non-homogeneous diffusion filter. On the other hand, regarding
the two-order tensor case, that is, when D is represented by a matrix, the term anisotropic
diffusion filter is usually adopted [14].

Most of diffusion filters are modifications of the work of Perona and Malik [12] and its
practical implementation by Gerig [5]. Both works are focused on a scalar diffusion coefficient
D = ¢(x,t). The method attempts to avoid diffusion closing to the boundaries (edges should
be preserved) while filtering (diffusion) should be encouraged in homogeneous areas. To that
end, since a natural approach to detect edges is looking at the gradient, the diffusion coefficient
c(x,t) is defined as a decreasing function, g(-), of VI(x,t)

= div(D - VI(x,t)) (60)

c(x,t) = g([IVI(x,1)]]). (61)

where || - || is a prescribed norm, commonly the Iy norm. When VI(x,t) — oo, ¢(x,t) — 0,

since c(x,t) is, by construction, non-negative. Thus, aléx NN 0, and smoothing is not applied.

For practical implementation, g(.) is usually defined as a decreasing function of ||VI(x,t)||, as
for instance:
VI(x
(VI Dl) = exp ( () )

(1 (WI; >||> )

25
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where K is the diffusivity parameter, which plays the role of thresholding mechanism in order
to control the sensitivity of edge detection. Under this formulation, the parameter K must be
manually selected. Two practical examples of AD filtering can be seen in Fig. 26 and Fig. 27.
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