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Abstract

Thresholding is a direct and simple approach to extract different regions from an image. In its basic for-
mulation, thresholding searches for a global value that maximizes the separation between output classes.
The use of a single hard threshold value is precisely the source of important segmentation errors in many
scenarios like noisy images or uneven illumination. If no connectivity or closed objects are considered, the
method is prone to produce isolated pixels. In this paper a new multiregion thresholding methodology is
presented to overcome the common drawbacks of thresholding methods when images are corrupted with
artifacts and noise. It is based on relating each pixel in the image to different output centroids via a fuzzy
membership function, avoiding any initial hard decision. The starting point of the technique is the defini-
tion of the output centroids using a clustering method compatible with most thresholding techniques in the
literature. The method makes use of the spatial information through a local aggregation step where the
membership degree of each pixel is modified by local information that takes into account the memberships
of the surrounding pixels. This makes the method robust to noise and artifacts. The general formulation of
the proposed methodology allows the design of spatial aggregations for multiple applications, including the
possibility of including heuristic information via a fuzzy inference rule base.
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1. Introduction

Thresholding is one of the most direct and simple approaches to image segmentation. It is an effective
method as long as the image shows well defined areas and the gray levels are clustered around distant values
with minimum overlap. It also has been used to provide an initial estimation or a prior to more complex
segmentation methods (techniques based on snakes, level-sets or active contours need an initial segmentation,
that can be manually done or obtained via thresholding [1, 2]), to provide masks of regions of interest [3],
or even as a technique to detect motion in surveillance environments [4, 5]. Thresholding is also extensively
used in the medical imaging field, where images are composed by several tissues, represented by their gray
levels [6]. The arrangement of these tissues or organs inside the image is usually clearer than the arragement
of objects in a natural scene image, hence the using of specific thresholding techniques.

Image thresholding techniques are well known, and some of the most used methods date from the 70s,
such as Otsu’s method [7, 8]. In its basic implementation, thresholding methods search for a global threshold
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value that somehow maximizes the separation between classes in the final result. However, regardless of the
method chosen to find the separation between classes, the use of a single hard value is known to be the source
of important segmentation errors when dealing with noisy images, uneven illumination and soft transitions
between gray levels [9, 10, 11]. The main drawback of this global threshold approach is due to it being pixel
oriented rather than region oriented, and therefore those pixels having the same gray level value will always
be segmented into the same class. If no connectivity or closed objects are considered, the method is prone
to produce isolated pixels.

Thus, despite being a long standing problem, these issues have not been resolved, and new approaches are
required to solve different configuration of signal and images; see some surveys of them in [9, 12, 13, 14, 15].
In the first one [9], authors classify thresholding methods into six main categories:

1. Methods based on the shape of the histogram [7, 8].

2. Clustering-based methods [16, 17, 18, 19, 20, 21].

3. Entropy-based methods [22, 23, 24].

4. Local methods, that adapt the threshold value on each region based on local features [25, 26].

5. Object attribute-based methods that search a measure of similarity between gray-levels and objects,
such as fuzzy shape similarity.

6. Spatial methods that use higher-order probability distribution and/or correlation between pixels [11].

The first three methodologies comprise the main tradition behind thresholding methods: the search for
a global threshold that allows us to divide the image into two or more regions. Methods proposed in the
literature can grow in complexity in the pursuit of the optimal threshold but ultimately, the final segmentation
will only depend on the gray level of each particular pixel. The final classification is done pixelwise. Note
that most of the algorithms based on fuzzy measures [27, 28, 29, 30, 31, 32, 33] fall into these categories. On
the other hand, local methods assume that different areas in the image require different thresholds. This is
the case for images with uneven illumination, in which objects are not totally represented by absolute gray
values.

All these methodologies will fail in the case of images corrupted by noise, where the gray levels of each
object are spread and merged due to the noisy distortions. Attribute-based methods are a good alternative,
as long as we have key information about the objects in the scene. Finally, spatial methods take into account
possible relations between pixels. The idea behind them is the fact that pixels belonging to the same object
will have a certain degree of connectivity, i.e., the presence of isolated pixels is unlikely and there is a strong
relation between a pixel and its neighborhood.

Note that these six categories can be merged into three practical methodologies:

1. Methods that calculate a global threshold for the whole image.

2. Methods that use an adaptive local threshold.

3. Methods that use spatial local information for classifying the pixels.

In this paper we propose a new thresholding methodology that takes advantage of the main features of
the last two categories:

• The membership degree of a particular pixel in a class is spatially related with the membership of its
surrounding neighbors.

• The final thresholding will take into account the local membership in each of the classes, which implicitly
makes the threshold locally variant.
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Figure 1: Example of classification of noisy pixel.

The main contribution of this paper relies on Fuzzy Sets Theory and Fuzzy Logic [34]. Fuzzy logic is
known to be a very flexible tool in classification problems where imprecise knowledge or not-well-defined
features have to be used. In addition, fuzzy logic is also a natural selection where information has to be
retrieved from linguistic statements. It has been widely used in the field of systems control [35], but there
are also a great amount of applications in the image processing field [36, 37, 38]. In the last 20 years, many
methods based on fuzzy logic and fuzzy measures [39, 40] have been proposed for image thresholding. They
are mainly focused on the search for the optimum threshold using fuzzy measures, buy many times they do
not take into account spatial information. Some of the techniques used comprised fuzzy clustering [41, 42],
modified versions of fuzzy clustering methods [19, 21], fuzzy measures [27, 43, 30, 44], optimization of fuzzy
compactness [45], fuzzy entropy [46] and the interpretation of thresholds as type II fuzzy sets [33, 32]. Parallel
with fuzzy measures, other soft computing methods have arisen, such as the heuristic methods based on ant,
bees and bacteria colonies [47, 48, 49].

In this paper we propose a new methodology which differs from those approaches in the literature. The
starting point is the idea that the membership of a pixel in a particular class or object will be highly
correlated with the membership in that class of the surrounding pixels. To take into account this local
spatial information we propose the use of fuzzy sets: a pixel will be assigned to the different classes of a
multiregion segmentation through a fuzzy membership function. The traditional hard assignment (i.e. a
pixel belongs or does not belong to an output class) is replaced by a soft assignment, following the basic
theory of fuzzy sets.

The paper is organized as follows: Section 2 presents the new thresholding methodology proposed. Results
and comparison with another methodologies and methods are shown in Section 3. Conclusions are presented
in Section 4.

2. Multiregion Fuzzy Thresholding

2.1. Motivation and purpose

The main limitation of global thresholds is that pixels having the same intensity levels will always be
segmented into the same class. This may lead to misclassification in images corrupted by noise or uneven
illumination. To overcome this problem, information about the behavior of the spatial surroundings of each
pixel must be considered. This spatial information can be taken into account using very different methods,
each one of them generating a different output segmentation. Most used methods are those we can call blind
methods: methods that clean the segmented image using local processing but without any prior information of
the image structure, object distribution, nature of noise, etc. These methods only make use of the segmented
values. Some common examples are the median filtering and morphological operations to remove isolated
pixels.

To motivate use of the local information, see for instance the image in Fig. 1. A pixel has been classified
as belonging to the Class 3 (red). In a 3× 3 neighborhood around the pixel we can check that this pixel is
an isolated value, probably generated by noise. The correction to this misclassification can be done using
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Figure 2: Pipeline of the multiregion fuzzy thresholding methodology described in the paper.

information about the image (such as the model of noise, the classification probability, the distance to the
centroid) or just using spatial or morphological operations. Note that if we use a median filter over that
neighborhood, the pixel will now be classified as Class 1 (blue). Similar results can be found using a filling
algorithm. In those cases, important information about the image is missing. If we check the distance to the
centroids, we realize that the pixel is 0.52% Class 3 and 0.48% Class 2, and it has been classified as 3 by a
small range. In a noisy image, it is very likely that this pixel belongs to Class 2, and is unlikely to belong
to Class 1. In what follows we will be using this idea of taking into account the local properties to improve
the classification methodology.

We propose a new thresholding methodology to make a multiregion segmentation of the different areas
within an image. To that end, we will follow a fuzzy assignment classification that will follow the philosophy
behind many fuzzy-based approaches in the literature [27, 28, 29, 30, 31], but it will be complemented with
a spatial aggregation step that will take advantage of the soft classification and the spatial relations. Our
fuzzy thresholding methodology will assign a membership degree to every pixel for each of the output classes,
rather than to a traditional hard thresholding. The membership degree of each pixel is then modified using
local information following some aggregation scheme and some fuzzy rules set beforehand. The aggregation
method is to be specifically designed for each particular application, although some examples will be given.
The inclusion of this aggregation step will be a great advantage when dealing with noisy images.

Finally, note that the methodology is compatible and complementary to some of the methods already
proposed in the literature, since the starting point is precisely a fuzzy assignment of pixels to classes.

2.2. Proposed thresholding methodology

Let I(r) be an image with L different regions we want to extract via thresholding, in order to obtain a
segmented image M(r), so that

M(r) = gs{I(r)}

where gs{.} is the segmentation method that can be considered a function that maps the NI levels of gray
of image I(r) into L values, i.e. gs : NI → L with L < NI .

To carry out the segmentation, the proposed methodology assumes that every pixel in the image I(r)
will have a degree of membership in each of the L regions. That membership will be modeled using fuzzy
membership functions. In what follows, we will denote µl(x), l = 1, · · · , L, as the fuzzy membership function
of the lth area. Spatial aggregations can therefore be applied into the membership plane to take into account
the relation between adjacent pixels prior to obtain the final segmentation.

The methodology, surveyed in Fig. 2, comprises five steps. Since the proposal is a methodology and not a
closed algorithm, in each of the steps we provide alternative implementations of the methods. The election
of any choice will depend on the kind of data and the particular features of the segmented image. Some
of the proposed choices were tested and will be described in the experiments section. The five steps of the
thresholding methodology are as follows:

1) Extraction of the centroids: The different areas in which the image will be segmented are defined
using L centroids. Typically, as previously stated, L < NI . The number of centroids can be manually set
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Figure 3: From probability to membership: (a) (Normalized) histogram of the image h(I), with three weighted Gaussian, pl(x)
fitted using MMSE. (b) From pl(x, θ), three fuzzy sets with Gaussian membership functions are created. (c) Alternatively, from
pl(x, θ) three fuzzy sets with PTS membership functions are created.

beforehand by the user or the algorithm can be automatically tuned to search for the optimum number of
regions. Many of the methods proposed in the literature for traditional thresholding may be used here in
this first step, specially those based on clustering [16, 17, 50] or entropy of the histogram [23, 24].

2) Definition of fuzzy membership functions: A fuzzy membership function µl(x), with l = 1, · · · , L
is associated to each of the classes linked to the previously defined centroids. There are two possible ways
to define the membership functions:

(a) From the histogram of the image, h(I). This method follows the classical approach for multiregion
thresholding, in which the main levels within the image are extracted from the histogram, h(I). A sum
of L weighted distributions is fitted to h(I):

h(I) ≈
L∑
l=1

ωl · pl(x;θl) (1)

with pl(x;θl) a probability density function defined by the set of parameters θl, and ωl are weights which
satisfy that

∑
l

ωl = 1. The fitting can be done using a minimization algorithm, such as minimum mean

square error (MMSE):

arg min
θl,ωl

∣∣∣∣∣h(I)−
L∑
l=1

ωl · pl(x;θl)

∣∣∣∣∣
2

. (2)

Typically Gaussian distributions are good candidates for pl(x;θl) to represent the histograms. However,
some modalities of medical imaging may benefit by using alternative distributions. MR data, for instance
is known to follow a Rician distribution [51, 52] that can be accurately approximated by a Gaussian for
high Signal-to-Noise Ratios. Ultrasound data, on the other hand, have been described using a myriad
of distributions, such as Rayleigh, K or homodyned-K. Lately in [53] authors show that, due to the
interpolation on the data, the histogram may be represented more accurately by a mixture of Gamma
distributions. Therefore, in those applications, a Gamma is a better candidate for pl(x;θl).

Our intention is to use membership instead of probability values. To that end, we use the information
of the histogram to model the fuzzy sets that will provide this membership information. The simplest
way would be using Gaussian membership functions (MF), such as the ones in Fig. 3-(b). Note that the
transition from probabilities to membership comes with a transformation of the first and last sets, and
a normalization of the weights.
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Although a natural transition, Gaussian MFs have some problems related to Fuzzy Sets Theory [54, 55]:
they are not consistent and the intersection of the sets is in a value smaller than 0.5. In order to work
properly, we require the fuzzy sets to be:

(i) A complete partition: ∀x ∃µl(x), 1 ≤ l ≤ L, such that µl(x) > 0.

(ii) Consistent: if µl(x0) = 1, then µk(x0) = 0 ∀k 6= l.

(iii) Normal: max(µl(x)) = 1.

(iv) The intersection between adjacent fuzzy sets is µl(x0) = µl+1(x0) = 0.5.

To that end, we choose to use Pseudo Trapezoid-Shaped (PTS)[54] membership functions, as depicted in
Fig. 3-(c). Alternative methodologies to obtain the MFs from the histogram can be found in [56, 57, 58].

(b) From the centroids, leaving aside histogram information. If PTS-MFs are used, all the information of
the histogram can be left aside, since the sets in Fig. 3-(c) can be built directly from the centroids values
extracted in the previous step. This is an advisable solution for general purpose segmentation or when
there is no precise knowledge about the distribution of objects or tissues in the image.

In what follows, the central fuzzy sets are selected to be triangular (a particular shape of PTS). However,
more complex shapes may be adopted, as trapezoid MFs, taking into account the variance of the fitted
Gaussian.

The output of this step will be the MFs that describe each of the output sets, µl(x), 1 = 1, · · · , L.

3) Assigning membership to each pixel: The membership of pixel r in the image I(r) in the l-th class
is given by µl(I(r)). Using PTS MF as previously defined, note that

L∑
l=1

µl(I(r)) = 1.

At this point, a first thresholding of the image could already be done:

M(r) = arg max
l
{µl(I(r))} (3)

with M(r) the output thresholded image. However, this way we are not taking advantage of the information
of the neighborhood, and the results will be strongly dependent on the method selected for the centroid
search.

The output at this stage, for each pixel, will be a vector of memberships:

µ(I(r)) = [µ1(I(r)) µ2(I(r)) · · · µL(I(r))]

If PTS MFs are selected, only 2 of the elements of each vector would be different from zero.

4) Local information aggregation. In this step, spatial information will be taken into account before
obtaining the final segmentation. This step is the main contribution of the proposed methodology. The
versatility of fuzzy logic allows us to design many different ways to consider the influence of the neighborhood
from the µ(I(r)) degrees previously defined. In what follows we propose an aggregation based solution,
suitable for general image thresholding.

If we consider a neighborhood η(r) centered around a pixel r, we can use the membership values µ(I(r))
of all the pixels in η(r) to better classify the image into regions. To that end we propose a local aggregation
of values:

µS(I(r)) = agg
s∈η(r)

{µ(I(s))} (4)
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where agg{.} is an fuzzy aggregation in a neighborhood η(r). The purpose of this function is the modification
of the original membership functions µl(I(r)) when local information is taken into account. One important
feature of this operation is that we work in the membership space, not over the image or over the final
segmentation. Different aggregations based on the pixels in the neighborhood can be defined, properly
tuned to the desired output. Some neighborhood based rule-sets for fuzzy image processing have been
previously proposed in the literature, see for instance [59, 60, 38, 61], that could be easily adapted to the
proposed scheme. Fuzzy morphological operators, like those described in [37, 57] can also be applied. In the
following we propose some aggregations for general purpose image thresholding.

(a) Median Aggregation (MedAg): The memberships of each of the pixels in η(r) are aggregated using the
median operator

µS
l (I(r)) = median

s∈η(r)
{µl(I(s))} (5)

Note that the neighborhood η(r) can be oriented in order to better find structures in one particular
direction.

(b) Average aggregation (AvAg): We define an averaging of each MF as

µS
l (I(r)) =

∑
ri∈η(r)

ωi · µl(I(ri)) (6)

with ωi the weights of the pixels considered. One possible definition would be a square uniform neigh-
borhood so that ωi = 1/|η(r)|, with |η(r)| the size of the considered neighborhood. Note that when
using PTS MFs, only two MFs µl(I) will have values different from zero. Thus, the averaging will highly
reduce the value of those isolated pixels, while keeping the values of the homogeneous areas.

(c) Iterative averaging aggregation (IterAg): In order to better find structures, we can define an iterative
procedure that averages the membership space. Since a tradeoff between structure finding and smoothing
must be considered, a small averaging window must be defined:

h =
1

3

 0 0.5 0
0.5 1 0.5
0 0.5 0

 .
The aggregation is then defined as

[µl(I(r))]t+1 = [µl(I(r))]t ∗ h, (7)

with ∗ being spatial convolution and t = 0, ..., T the number of iterations. Finally

µS
l (I(r)) = [µl(I(r))]T .

(d) Absolute Maximum (AbMax): The membership of each of the pixels in η(r) is aggregated using the
maximum operator:

µS
l (I(r)) = max

s∈η(r)
(µl(I(s))). (8)

We have avoided any kind on implementation based on rules and fuzzy decision, as some heuristic is
always involved. However, for a particular implementation (for instance to threshold bones in radiograph
images to search for a particular disease, or for text identification) one can think on using alternative spatial
filters with fuzzy rules, such as the Russo’s FIRE operators [37].

5) Image segmentation. The last step is to calculate the final segmented image from the modified
membership functions. We propose using the maximum operator:

M(r) = arg max
l

{
µS
l (I(r))

}
(9)

although other defuzzification and centroid calculation methods can be used [34].
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3. Experiments and Results

We experimentally tested the methodology proposed in this paper. Throughout this section, the images
used are those shown in Fig. 4.

First, we analyze the influence of the centroid extraction method on the final segmentation. As previously
stated, different methods can be used in order to extract the L centroids that will determine the multiple
regions within the image. The determination of these centroids is key to the accuracy of the method.
However, the choice of the most suitable method will depend on the final application. Most of the clustering
and thresholding methods in the literature can be used for this task. For the sake of illustration, three
different simple approaches are considered:

1. The centroids are selected from the L most relevant maxima of the histogram h(I), and PTS member-
ship functions are created from this centroids.

2. The centroids are obtained from the fitting of L Gaussian distributions to the histogram of the image
h(I) following eq. (2). Gaussian MF are created from the results.

3. A clustering method (fuzzy c-means [50]) is used in order to obtain L centroids. PTS membership
functions are created from these centroids.

For each method, two different inputs are considered for the centroid calculation: the unprocessed image,
I(r) and a smoothed version, using a Gaussian kernel with σ = 1.5. From the MFs a simple segmentation is
done by using the maximum membership in eq. (3). For this experiment, no local aggregation is done and
L = 5 regions are considered. Images in Fig. 4-(a) are used. Results are shown in Fig. 5.

From the results we can see the great influence of the centroid selection method over the final segmenta-
tion. For this particular case, the Gaussian MFs, Fig. 5-(b,e),show a less robust behavior and they greatly
benefit from the smoothing of the data. Clustering, Fig. 5-(c,f), appears to be a robust method which
goes well with the PTS memberships, and it is rather invariant to the smoothing in the image. The use
of the maxima of the histogram, Fig. 5-(a,d), also shows a good behavior, though it is more sensitive to
image smoothing. In any case, note that all the methods succeed in properly separating the cell from the
background, and even in locating important structure inside the cell. In our comparisons with well-known
thresholding techniques, we use the fuzzy c-means clustering method.

Second, we analyze the behavior of the different aggregations proposed. To that end, we will use the
following data: the cell in Fig. 4-(a) (corrupted by additive Gaussian noise with σ = 10 and σ = 20) and the
radiographic image in Fig. 4-(h). All pixel ranges are [0,255]. In all the methods L = 5 sets are considered.
Results are given in Fig. 6 and Fig. 7.

From Fig. 6, we can raise some interesting issues about the behavior of the different methods. Note that
all succeed in the task of properly identifying the regions within the image, despite the noise. When the
noise increases, MedAg fails to properly identify the edges, since it keeps some of the noisy pattern, while
AvAg and IterAg show a very accurate segmentation with connected objects. The AbsMax works properly
for the original image but shows undesired effects in noisy data. These differences are less obvious when a
non-noisy image is considered, like the finger in Fig. 7. There, all the methods show a similar behavior with
subtle differences.

Third, we compare the proposed method with some well-known thresholding techniques. To that end,
we have selected some classic algorithms, fuzzy-based thresholding techniques and methods that take into
account spatial information. We consider these methods to be representative of the state-of-the-art thresh-
olding techniques:

1. Otsu hard thresholding method for 2 regions (Otsu) and an extension for N regions (Otsu-N) [7, 8].

2. Fuzzy c-means (FCM): The segmentation is done using the clustering method proposed in [50]. The
algorithm clusters objects into c partitions, attempting to find the centroids of natural clusters in the
data. To do that, the algorithm minimizes the intra-cluster variance through a squared error function.
The number of centroids is required as a parameter of the method.
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3. The Iterative Thresholding Segmentation (ITS) algorithm proposed in [10]. We choose this method
since it was originally for segmentation of very noisy cell images. The initial threshold is iteratively
adjusted based on local information, obtaining a final image less sensitive to noise. Only two output
sets are considered.

4. Maximum a posteriori spatial probability segmentation (MASP), as proposed in [11]. The method is
also intended to be used with noisy images. The method performs pixel-by-pixel segmentation taking
into account local spatial information. The probability of a pixel belonging to a particular class under
spatial constraints is defined as the a posteriori spatial probability. The maximum a posteriori is then
used to classify each pixel.

5. Spatial fuzzy clustering (S-FCM), proposed in [18]. This method is proposed to overcome the problems
of standard FCM algorithms when noise and artifacts are present. They incorporate local intensity
and spatial information and they can even apply morphological operations and spatial restrictions at
a postprocessing stage. In [21], the authors added a level-set step to the method that improves the
segmentation. We confine our experiments to the thresholding step, leaving level sets aside1.

6. Image thresholding using type II fuzzy sets (FT-II), as proposed in [33]. The method calculates a
global threshold by the minimization of a new measure called ultrafuzziness. It considers the threshold
as a type II fuzzy set. Only two output regions are considered.

We will select three of the proposed aggregation methods, MedAg and AvAg and IterAg, with clustering
for centroid selection. For the sake of comparison, the thresholding without aggregation in eq. (3) is also
shown. We will denote it by Max. The following images are used for comparison: the phantom in Fig. 4-(d)
(corrupted by additive Gaussian noise with σn = 30 and σn = 80), the cell in Fig. 4-(a) (original image, a
noisy version, corrupted by additive Gaussian noise with σn = 10 and a version corrupted by multiplicative
Rayleigh noise) and the liver CT image in Fig. 4-(g). For the phantom image, L = 3 regions will be considered
and for the cell and liver images L = 5. Results are shown in Fig. 8 and Fig. 9.

Results for the noisy phantom, Fig. 8, show the inability of some of the classical methods to cope with
noise in the image. If the behavior of the neighborhood is not taken into account, the variations of intensity
due to noise may be translated into different output regions. This is the case for Otsu-N, FCM and MASP.
The 2-region Otsu method and the ITS show good results in preserving the central area as a homogeneous
region, although ITS, due to the spatial operations, totally eliminates the inner lines. FT-II shows a more
noisy behavior inside the central regions, but the shapes (and in particular the lines) are better defined.
A simple median operator may properly fix this result. A better segmentation can be seen in S-FCM for
σ = 30, due to the spatial constraints of this method. However, it cannot cope with high noise levels.

The proposed methods are the ones undoubtedly showing the best results. IterAg of the moderate noise
case is able to identify the 3 different regions without any noisy interference. MedAg and AvAg show slightly
worse results, but, nevertheless, much better that the rest. This differences are accentuated when the high
noise case is considered. Most of the methods are not able to cope with the pattern, even those that use
spatial information, like S-FCM. In those cases, methods based on fuzzy aggregations are the only ones that
are able to identify the regions. Even when the segmentation is not totally perfect, AvAg and IterAg succeed
in identifying the different areas. The Max results show the thresholding when no aggregation method is
used. Note that the noisy pattern present in this image is totally removed by the aggregation methods. It
is a clear illustration of the potential of taking into account the neighborhood with a properly tuned fuzzy
rule set.

Results for the cell image, Fig. 9, are also illustrative. First, when no noise is added to the image, most of
the methods perform similarly, except the ITS that shows a great smoothing. The methods based on fuzzy
aggregations show more regular edges and no isolated points, but, nevertheless, results of every method are

1The original MATLAB software provided by the authors carries out a Wiener filtering to remove noise form the image. To
test the method without any additional filtering, this step has been removed.
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valid. However, great differences arise when images are corrupted by additive noise. Non-fuzzy techniques
show a more noisy pattern and regions are no longer closed and most methods are not able to identify the
background. On the other hand, fuzzy methods with aggregations are those with the best results, very
similar to the non-noisy case. MedAg still shows some isolated pixels but, again, the three fuzzy methods
are able to properly find well-defined closed structures inside the image. These results consistently repeated
for multiplicative noise. In that case, the background is easily identified by most of the methods, but the
different areas inside the cell are mostly erroneous. The proposed algorithms are the only ones showing a
capability of properly identifying these inner areas.

Finally, this behavior is corroborated by results for the liver. Most methods are able to properly identify
the different tissues, but the fuzzy aggregations, once more, show more connected results.

Last, for the sake of quantitative comparison, the multilevel thresholding methods are now compared
using the Berkeley Segmentation Dataset and Benchmark (BSDS300) [62]. For this experiment, the training
set of 200 color images provided by the data base is considered. As ground truth, the BSDS300 provides
segmentations of each image carried out by several human subjects. For the sake of simplicity and compati-
bility with the methods in the literature, all the images have been converted to gray scale. In addition, since
the proposed methodology is intended to work in noisy environments, the images have been corrupted with
Gaussian noise (σ = 30) and with multiplicative Rayleigh noise, and the experiment was repeated.

The following scalar measures were considered for region-based comparison:

• Rand Index (RI): [63] This is a measure of the similarity between two data clusterings. RI compares
the compatibility of assignments between pairs of elements in two clusters by calculating the fraction
of correctly classified (respectively misclassified) elements to all elements. For two clusterings C1 and
C2 it is defined as

RI(C1, C2) =
2(n11 + n00)

N(N − 1)
(10)

where N is the total number of points, n11 stands for the number of pairs that are in the same cluster
in C1 and C2, and n00 is the number of pairs that are in different clusters. The RI has a value between 0
and 1, with 0 indicating that the two data clusters do not agree on any pair of points and 1 indicating
that the data clusters are exactly the same.

• Variation of Information (VI): [64] This measures the distance between two segmentations in terms of
their average conditional entropy given by:

VI(C1, C2) = H(C1) +H(C2)− 2I(C1, C2) (11)

where H(Ci) is the entropy associated with clustering Ci and I is the mutual information between two
clusterings C1 and C2.

• The covering of a segmentation S1 by segmentation S2 as defined in [65]:

C(S2 → S1) =
1

N

∑
R1∈S1

|R1| max
R2∈S2

O(R1,R2) (12)

where O(R1,R2) is the overlap between regions R1 and R2 defined as:

O(R1,R2) =
|R1 ∩R2|
|R1 ∪R2|

(13)

We will use two complementary descriptors, C(S2 → S1) and C(S1 → S2).

For each method and for each image, we consider different segmentations using 3 to 10 regions. The best
match, in terms of best benchmark results, is considered. Results are shown in Table 1. Note that, for RI
and the overlap measures, the greater the better, while for VI the smaller the better. The best value for
each row is highlighted.
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Otsu-N FCM S-FCM MASP MedAg AvAg IterAg

RI
Original 0.7138 0.7161 0.7179 0.6721 0.7198 0.7237 0.7241
Gaussian 0.6816 0.6862 0.6902 0.6425 0.7075 0.7026 0.7029
Rayleigh 0.6325 0.6704 0.6598 0.5803 0.6918 0.6538 0.6502

VI
Original 2.9746 2.9914 2.9221 3.4835 2.9483 2.8912 2.8820
Gaussian 3.3867 3.3964 3.2193 3.9647 3.0776 2.9473 2.9216
Rayleigh 3.4821 3.5300 3.2588 3.8401 3.2903 2.9911 2.931

C(S2 → S1)
Original 0.3535 0.3499 0.3602 0.2943 0.3558 0.3644 0.3658
Gaussian 0.2862 0.2845 0.3121 0.2305 0.3331 0.3517 0.3552
Rayleigh 0.2557 0.2506 0.2765 0.2251 0.2951 0.3332 0.3400

C(S1 → S2)
Original 0.4414 0.4365 0.4503 0.3414 0.4424 0.4493 0.4507
Gaussian 0.3638 0.3614 0.3960 0.2662 0.4191 0.4447 0.4480
Rayleigh 0.3526 0.3437 0.3935 0.2933 0.3816 0.4438 0.4554

Table 1: Region benchmarks on the BSDS300. Three experiments are considered: (1) Original Data base; (2) Corrupted by
Gaussian noise; (3) Corrupted with multiplicative Rayleigh noise. For each configuration, the best value is highlighted.

Results show that the proposed methods are those with the best values on the four considered measures.
What is more, they also show a great robustness when the noise experiments are carried out. Note, for
instance, the small variability of the results for the overlap measures in IterAg when compared with other
thresholding methods.

4. Conclusions

We have presented a new thresholding methodology. This methodology overcomes some of the common
drawbacks of thresholding methods when images are corrupted with artifacts and noise. It is related to
published spatial-based thresholding methods, but it also presents some important differences from them,
being also related to fuzzy-based strategies. The philosophy behind the proposed methodology is simple: in
noisy images the intensity value of a pixel should not be an absolute classification feature, since noise will
generate similar intensity levels in different objects, leading to a misclassification of isolated pixels. Instead,
some metric based on the intensity levels must be considered and this metric must be weighted by the
information of the surrounding pixels. For this task we have proposed the use of fuzzy membership degrees.
Thus, each pixel will belong to different output classes with a certain degree. This fuzzy membership could
also be replaced by distance to centroids, for instance. The key of the method is to work in the membership
space rather than on the image space. This way, the memberships of the pixels in a local neighborhood
modify the membership degree of every particular pixel.

The whole process presented here should be seen as a methodology rather than a closed algorithm, and
each of the different steps can be replaced by equivalent operations. The starting point is the definition
of the centroids for the output classes. In the experiments section we chose to use an FCM algorithm for
its robustness and good results. The purpose of this step is to achieve well defined output centroids, and
other FCM algorithms have also achieved excellent results, as in [19, 20, 18]. Alternatively most of the
thresholding and clustering methods in the literature can be used to carry out this task, so we can benefit
from very accurate optimization methods that have been used for many years.

The key of the proposal is the use of the the spatial aggregation step, which makes our method able to
overcome noise-related problems that traditional methods cannot cope with. Our first attempts to define
general purpose thresholding aggregations have shown good results, and can potentially get even better when
applied with constraints suitable for particular segmentation goals.

All in all, the methodology proposed has the following advantages: (1) It is totally automatic, and
does not require human intervention; (2) the hard thresholding decision is postponed to the final stage,
so all the spatial operations are done before taking into account the different memberships; (3) spatial
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aggregations make the thresholding more robust to noise and artifacts; (4) it can benefit from the use of
accurate thresholding methods in the first step; and (5) the spatial aggregations can be specifically designed
for a particular application, and heuristic information can be added via a fuzzy inference rule base.
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[64] M. Meilǎ, Comparing clusterings: An axiomatic view, in: Proc. of the 22nd International Conference
on Machine Learning, New York, NY, USA, 2005, pp. 577–584.
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(a) Cell (b) Cell (additive noise) (c) Cell (mult. noise)

(d) Ball (e) Ball (σn = 30) (f) Ball (σn = 80)

(g) Liver (h) Radiograph

Figure 4: Original images used for the experiments.
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Figure 5: Influence of different centroid extraction methods over the final segmentation. (a,d) PTS MF after maxima search;
(b,e) Gaussian MF after Gaussian fitting; (c,f) PTS MF after clustering. Top row (a,b,c) image smoothed with Gaussian kernel.
Lower row (d,e,f) no smoothing.

MedAg AvAg IterAg AbsMax

Figure 6: Comparison of aggregation methods. Top row: original. Middle: additive Gaussian noise (σ = 10). Bottom: additive
Gaussian noise (σ = 20)
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Figure 7: Comparison of aggregation methods.
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Figure 8: Comparison of thresholding methods for the phantom corrupted by additive Gaussian noise. Two different levels of
noise are considered, σ = 30 and σ = 80.
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Figure 9: Comparison of thresholding methods for the cell and liver image.
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