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Efficient and Reliable Schemes
for Nonlinear Diffusion Filtering

Joachim Weickert, Bart M. ter Haar Romeny,Member, IEEE,and Max A. Viergever

Abstract—Nonlinear diffusion filtering is usually performed
with explicit schemes. They are only stable for very small time
steps, which leads to poor efficiency and limits their practical
use. Based on a recent discrete nonlinear diffusion scale-space
framework we present semi-implicit schemes which are stable for
all time steps. These novel schemes use an additive operator split-
ting (AOS), which guarantees equal treatment of all coordinate
axes. They can be implemented easily in arbitrary dimensions,
have good rotational invariance and reveal a computational
complexity and memory requirement which is linear in the
number of pixels. Examples demonstrate that, under typical
accuracy requirements, AOS schemes are at least ten times more
efficient than the widely used explicit schemes.

Index Terms—Absolute stability, nonlinear diffusion, recursive
filters.

I. INTRODUCTION

I MPRESSIVE results are the main reason for using nonlin-
ear diffusion filtering in image processing: Unlike linear

diffusion filtering (which is equivalent to convolving with
a Gaussian), edges remain well localized and can even be
enhanced. Spatial regularizations of this filter class have a solid
mathematical foundation as well-posed scale-spaces [12], [44],
[46], whose parameter influence is well understood [6], [25].

Poor efficiency is the main reason fornot using nonlinear
diffusion filtering: Most approaches are based on the simplest
finite difference discretization by means of a so-called explicit
or Euler-forward scheme. This scheme requires very small
time steps in order to be stable. Hence, the whole filtering
procedure is rather time-consuming.

In the present paper, we address this problem. We present
a novel type of separable schemes that do not suffer from
any time step size restriction, since all stability-relevant terms
are discretized in an implicit manner. The backbone of these
schemes is a Gaussian algorithm for solving a tridiagonal
system of linear equations. It is fast, stable and requires only a
few lines programming work. Its forward and backward substi-
tution step can be regarded as a causal and anticausal filter of
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a recursive scheme. The presented algorithms are applicable
in arbitrary dimensions and their computational and storage
effort is linear in the image size. This shows theirefficiency.

We prove thereliability of these schemes by verifying that
they satisfy recently established criteria for nonlinear diffusion
scale-spaces [45], [46]. This comes down to checking six sim-
ple criteria. If these requirements are fulfilled we can be sure
that the scheme preserves the average grey value, satisfies a
causality property in terms of a maximum–minimum-principle,
reveals a large class of smoothing Lyapunov functionals, and
converges to a constant steady-state as the time tends to infin-
ity. It should be noted that the discrete maximum–minimum
principle is a very restrictive stability criterion (more restric-
tive than the von Neumann stability), since it also takes into
account the boundary conditions and guarantees that over- and
undershoots cannot appear.

The goal of this paper is to guide the reader in a system-
atic way to these so-called additive operator splitting (AOS)
schemes. Specific knowledge in numerical analysis is not
necessary, as we shall refer to the required material in the
literature whenever it is needed. However, the reader who
is interested in a more detailed introduction to the matrix
algebra, which is useful for the present paper, may find this in
Ortega [35, ch. 6]. As a prototype of a well-founded nonlinear
diffusion filter, we focus on a spatial regularization of the
Perona–Malik filter [37] by Catt´e et al. [12], and Whitaker
and Pizer [50].

The paper is organized as follows. Section II gives a brief
survey on this diffusion model (henceforth, theCLMC equa-
tion). In Section III, we review the simplest scheme for the
one-dimensional (1-D) CLMC equation: the explicit (Euler
forward) discretization in time. We analyze it by means of
criteria for discrete nonlinear diffusion scale-spaces in order
to explain why it requires rather prohibitive time step sizes.
As a remedy we study a semi-implicit discretization for
which we show that it satisfies all discrete scale-space criteria
(including stability) even for arbitrary large time steps. It
requires to solve a tridiagonal linear system of equations,
which is easily and efficiently done by a special variant of
the well-known Gaussian elimination algorithm. This so-called
Thomas algorithmwill be presented in detail, since it forms
the core of the whole scheme.

In Section IV we consider the higher dimensional case. It is
argued that the simple explicit scheme leads to even more
restrictive stability conditions than in the 1-D case, while
the semi-implicit scheme remains absolutely stable. However,
solving the -dimensional linear system becomes significantly
less efficient for dimensions .
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As a remedy we present an alternative scheme which is
also semi-implicit, has the same approximation order, and is
absolutely stable, but it can be separated into 1-D processes.
Thus, the simple and efficient Thomas algorithm can be
applied again. Unlike classical multiplicative splitting schemes
from the mathematical literature, we consider an additive
operator splitting (AOS). It ensures that all coordinate axes
are treated equally, a very desirable symmetry property in
the context of image processing. Furthermore, we shall check
that the AOS schemes satisfy all criteria for discrete nonlinear
scale-spaces.

The section is concluded by proposing a related method for
the regularization step within the CLMC model. Since this
regularization is based on a Gaussian convolution, it is natural
to regard it as a linear diffusion filter for which one may also
apply splitting techniques based on the Thomas algorithm.

Section V presents an -dimensional algorithmic formula-
tion of the AOS schemes and analyzes its complexity.

In Section VI, we evaluate the results by checking the
performance of AOS schemes with respect to rotational in-
variance and accuracy. This allows us to propose reasonable
time step size and to analyze the accuracy and efficiency
in comparison to the unsplit semi-implicit scheme and the
widely-used explicit scheme.

We conclude the paper with a summary in Section VII. A
shortened preliminary version of this paper can be found in
[47].

Related Work:Our work has been influenced by a number
of related approaches which we would like to mention here.

Implicit splitting-based approaches for linear diffusion fil-
tering have been proposed in [9] and [20] and also in [2],
[3], and [52], where their realization as recursive filters is
suggested. Impressive results on improved efficiency by means
of recursive filtering can be found in [14] and [15], and
the close relation between recursive filters and linear scale-
space approaches has been clarified in [32]. Semidiscrete or
fully discrete analogs of linear diffusion filtering have been
proposed in [4], [26], [34] and [38].

In the nonlinear diffusion field, one can find several ap-
proaches that aim to be efficient alternatives to the con-
ventional two-level explicit finite-difference scheme, for in-
stance multigrid methods [1], finite element techniques with
adaptive mesh coarsening [5], semi-implicit approaches [12],
three-level methods, numerical schemes with wavelets as trial
functions, and pseudospectral methods [18], and multiplica-
tive splittings [43]. Even hardware proposals for nonlinear
diffusion filtering can be found in the literature [19] and [36].

Schemes that inherit a large number of the properties of their
continuous counterparts have also been proposed in the context
of curvature-based nonlinear scale-spaces [8], [10], [11], [13].
Sophisticated algorithms for such processes comprise fast level
set methods [40], high-order ENO schemes [41], and implicit
algorithms for mean curvature motion [2], [31].

II. THE CONTINUOUS FILTER PROCESS

In the -dimensional case the filter of Catté et al. [12] has
the following structure.

Let be our image domain and
consider a (scalar) image as a bounded mapping frominto
the real numbers . Then the CLMC filter calculates a filtered
image of as a solution of the diffusion equation

div (1)

with the original image as initial state

(2)

and reflecting boundary conditions

on (3)

where denotes the normal to the image boundary.
The “time” is a scale parameter: increasingleads to

simpler image representations. The whole embedding of the
original image into such a one-parameter family of simplified
images is calledscale-space. The first representative of this
very general and useful image processing concept, namely
linear diffusion filtering, has been derived in an axiomatic way
by Iijima more than 35 years ago [23], [48].

In order to reduce smoothing at edges, the diffusivityis
chosen as a decreasing function of the edge detector .
Here, is the gradient of a smoothed version ofwhich
is obtained by convolving with a Gaussian of standard
deviation

(4)

(5)

We use the following form for the diffusivity:

. (6)

For such rapidly decreasing diffusivities, smoothing on both
sides of an edge is much stronger than smoothing across it.
As a result, the gradient at edges may even be enhanced (see
[37] for more details). plays the role of a contrast parameter:
Structures with are regarded as edges, where the
diffusivity is close to zero, while structures with
are considered to belong to the interior of a region. Here the
diffusivity is close to one. In this sense, the CLMC model
serves as a selective smoothing, which prefers intraregional
smoothing to interregional blurring. After some time it leads to
segmentationlike results, which are piecewise almost constant.

The parameter makes the filter insensitive to noise
at scales smaller than. It is also a regularization parameter
which guarantees well posedness of the process: Catté et al.
[12] have shown that their filter has a unique solution which
is infinitely times differentiable for . Weickert [44], [46]
has proved that it depends continuously on the original image,
satisfies a maximum–minimum principle and reveals a large
family of smoothing Lyapunov functionals which guarantee
that the solution tends to a constant image for . During
the whole evolution, the average grey value remains unaltered.
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Equations of this type have been successfully applied to
process medical images (see e.g., [24], [27], [50]). Never-
theless, they are only one representative of a large class of
nonlinear scale-spaces. Overviews of other methods can be
found in [16], [21], and [46].

III. 1-D CASE

A. Explicit Scheme

1) The Scheme:The 1-D CLMC equation is given by

(7)

Let us now consider the simplest discrete approximation
of this process. A discrete image can be regarded as a vector

, whose components , display
the grey values at each pixel. Pixelrepresents some location

, and is the grid size. We consider discrete times ,
where IN and is the time step size. By we denote
approximations to .

The simplest discretization of (7) with reflecting boundary
conditions is given by

(8)

where is the set of the two neighbors of pixel(boundary
pixels have only one neighbor).

The diffusivities approximate . They can
be obtained as follows.

In the spatially discrete case the convolution
comes down to a multiplication of with a suitable
matrix . In Section IV-C we shall present an
efficient way to achieve this in the spatial domain. A gradient
approximation by central differences gives

(9)

for some inner pixel . This expression remains also valid at
the boundary pixels, if we extend the image by reflecting it
at the boundary.

We can write the explicit scheme in matrix–vector notation
as

(10)

with and

,

,

(else).

(11)

This comes down to the iteration scheme

(12)

where is the unit matrix. This scheme is called
explicit, since can be directly calculated from without
solving a system of equations.

Such an explicit iteration step is computationally very
cheap: It requires mainly to calculate the three nonvanishing
matrix entries per row and to perform a matrix–vector multi-
plication. The computational and storage effort is linear in the
pixel number . But does this explicit scheme also create a
good discrete scale-space and how far can we come with one
step? We can find an answer to these question by applying a
framework for discrete nonlinear diffusion scale-spaces, which
we shall review next.

2) Criteria for Discrete Nonlinear Diffusion Scale-Spaces:
Recently, a scale-space interpretation for the continuous
CLMC equation and its anisotropic generalizations has been
established [44], [46]. In addition to invariances such as
the preservation of the average grey value, it has been
shown that—it spite of its contrast-enhancing potential—these
equations create smoothing scale-spaces: They obey a
maximum–minimum principle, have a large class of smoothing
Lyapunov functionals, and converge to a constant steady-state.

It would be desirable to ensure that discrete approximations
do also reveal these qualitiesexactly. Criteria have been
identified under which one can guarantee that a discrete
scheme of type

(13)

IN (14)

possesses such properties [45], [46]. All one has to check are
the following criteria for .

D1) Continuity in Its Argument:

(15)

D2) Symmetry:

(16)

D3) Unit Row Sum:

(17)

D4) Nonnegativity:

(18)

D5) Positive Diagonal:

(19)

D6) Irreducibility:
We can connect any two pixels by a path with nonva-
nishing diffusivities. Formally:

For any there exist with
and such that for

.
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Under these prerequisites the filtering process is well posed
and satisfies the following discrete scale-space properties [45],
[46]:

a) Average Grey-Level Invariance:The average grey
level is not affected by the discrete
diffusion filter:

IN (20)

This invariance is required in scale-space based segmentation
algorithms such as the hyperstack [33].

b) Extremum Principle:

IN (21)

This property is much more than a stability result which
forbids under- and overshoots. It also ensures that iso-intensity
linking toward the original image is possible. Hence, it states
an important causality property, cf., [22].

c) Smoothing Lyapunov Sequences:The process is a
simplifying, information-reducing transform with respect to
the following aspects.

1) The -norms

(22)

are decreasing in for all .
2) All even central moments

IN (23)

are decreasing in .
3) The entropy

(24)

a measure of uncertainty and missing information, is
increasing in (if is positive for all ).

d) Convergence to a Constant Steady-State:

(25)

Thus, the discrete scale-space evolution tends to the most
global image representation that is possible: a constant image
with the same average grey level as.

3) Does the Explicit Scheme Create a Discrete
Scale-Space?:Let us now investigate if the explicit scheme
(12) satisfies the criteria D1–D6 for discrete nonlinear
scale-spaces. Let

(26)

By virtue of (11) we observe that the continuity of with
respect to its argument follows directly from the continuity of
the diffusivity .

The symmetry of follows from (11) and the symmetry of
the neighborhood relation [ ].

By the construction of it is also evident that the row
sums of vanish. Hence, all row sums of are one, which
proves D3.

Thus, let us investigate the nonnegativity. From for
, we also have for . Thus, we can focus

on the diagonal entries. If they are all positive, both D4 and
D5 are satisfied. Since

(27)

and , positive diagonal entries require that

(28)

In order to show that is irreducible, let us assume that
satisfies this restriction and consider two arbitrary pixels

and . If then the positivity of implies that

(29)

If then

(30)

This establishes D6.
From these considerations we conclude that the explicit

scheme creates a discrete scale-space provided that the time
step size satisfies the restriction (28). In image processing, one
usually sets . Since the diffusivity is bounded from
above by 1, definition (11) allows us to guarantee (28) for

.
In practice, this is often a very severe step size restriction.

It means that the use of an explicit scheme is limited rather
by its stability than its accuracy. For this reason it would be
interesting to look for schemes with better stability properties.
This shall be done next.

B. Semi-Implicit Scheme

1) The Scheme:We consider a slightly more complicated
discretization of (7), namely

(31)

which leads to the scheme

(32)

We observe that this scheme does not give the solution
directly (explicitly): It requires to solve a linear system first.
For this reason it is called alinear-implicit (semi-implicit)
scheme.

Remark: One may also be interested in studying the(fully)
implicit scheme

(33)

leading to a nonlinear system of equations. This is more
complicated to solve. Below we shall see, however, that such
a high effort is not necessary, since already semi-implicitness
is sufficient to guarantee absolute stability.
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2) Does the Semi-Implicit Scheme Create a Discrete
Scale-Space?:In order to establish the semi-implicit scheme
(32) as a discrete scale-space we have to check D1–D6 again.

First we have to show that

(34)

is invertible. This is easily seen, becauseis strictly diago-
nally dominant

(35)

It is well known from linear algebra that strictly diagonally
dominant matrices are invertible, see e.g., [35, p. 226]. Thus,

(36)

exists and the continuity of in its argument follows from
the continuity of . Moreover, the symmetry of carries also
over to and , which establishes D2.

In order to prove D3, consider .
Since has unit row sum, we have . This implies that

(37)

Reading this componentwise shows thathas also unit row
sum.

D4–D6 can be verified in one step. We already know that
is strictly diagonally dominant. It is also immediately seen that

is irreducible, for , and for all . Then
a theorem by Varga [42, p. 85] tells us that satisfies

(38)

Thus, is nonnegative, has positive diagonal and is irre-
ducible.

From these considerations we observe that the semi-implicit
scheme creates a discrete nonlinear diffusion scale-space for
arbitrarily large time steps. In particular, it is unconditionally
stable and does not suffer from any time step size restriction.
Unlike the explicit scheme, it can be fully adapted to the
desired accuracy without the need to choose small time steps
for stability reasons.

3) Solving the Tridiagonal Linear System—The Thomas
Algorithm: The semi-implicit scheme requires to solve a
linear system, where the system matrix is tridiagonal and
diagonally dominant. The most efficient way to do this is the
so-calledThomas algorithm, a Gaussian elimination algorithm
for tridiagonal systems. It can be found in many textbooks
on numerical analysis, e.g., [39, pp. 43–45]. However, since
it builds the backbone of our algorithms and since we want
to keep this paper self contained, we survey its algorithmic
features here.

The principle is as follows. Suppose we want to solve a
tridiagonal linear system with

...
...

... (39)

Then the Thomas algorithm consists of three steps.

Step 1) LR Decomposition:We decompose into the
product of a lower bidiagonal matrix

...
...

(40)

and an upper bidiagonal matrix

...
... (41)

Comparing the coefficients shows that for all , and
and can be obtained as follows:

Solving for is done in two steps:
Step 2) Forward Substitution:We solve for . This

gives

Step 3) Backward Substitution:We solve for .
This leads to

This completes the Thomas algorithm. It is stable for
every strictly diagonally dominant system matrix. One may
also regard it as a recursive filtering: The LR decomposition
determines the filter coefficients, Step 2 is a causal filter and
Step 3 an anticausal one. The whole scheme is very efficient;
it requires only

(42)

multiplications/divisions, and

(43)

subtractions. Hence, the CPU effort islinear in . The same
is true for the storage effort.

Applying the Thomas algorithm to the semi-implicit scheme
takes almost twice as long as one iteration of the explicit
scheme, but we may use much larger time steps, since the
scheme is absolutely stable.
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IV. HIGHER-DIMENSIONAL CASE

A. Explicit and Semi-Implicit Schemes

The -dimensional CLMC equation is given by

(44)

We can discretize the summands of the right hand side in
the same manner as in the 1-D case. Using only one index
for pixel numbering, we may represent the whole image of
size as a vector of size . In
this vector–matrix notation we can write the-dimensional
explicit scheme as

(45)

and its semi-implicit counterpart as

(46)

In both cases, the matrix corresponds to
derivatives along theth coordinate axis. Let us also introduce

(47)

What about the reliability of both schemes? Checking the
discrete scale-space requirements, D1–D6 can be done in a
similar way as in the 1-D case, see [46, Th. 8] for more details.
As in the 1-D case one obtains that the explicit scheme creates
a discrete scale-space for

(48)

and that the semi-implicit scheme satisfies all requirements
unconditionally.

What does this mean regarding efficiency? In the-
dimensional case each inner pixel has neighbors with
which it is connected via nonvanishing entries in theth row
of . From (11) we see that we can estimate

(49)

where denote the dimensions of an -
dimensional pixel. With and ,

restriction (48) may be replaced by

(50)

Thus, the allowed step size of the explicit scheme becomes
even smaller for higher dimensions.

However, this does not necessarily imply that the semi-
implicit scheme becomes superior. There appears a new prob-
lem as well: Although the actual structure of the matrix
depends on the pixel numbering, it is not possible anymore
to order the pixels in such a way that in theth row all non-
vanishing matrix elements can be found within the positions

to ; usually, the matrix reveals a much
larger bandwidth. Applying direct algorithms such as Gaussian
elimination would destroy the zeros within the band and would
lead to an immense storage and computation effort. Hence,
iterative algorithms have to be applied. Classical methods
like Gauss–Seidel or successive overrelaxation (SOR) do not
need additional storage and convergence can be guaranteed
for the special structure of . This convergence, however, is
rather slow. Faster iterative methods such as the precondi-
tioned conjugate gradient algorithms [30, pp. 154–161] need
significantly more storage, which can become prohibitive for
large images. A typical problem of iterative methods is also
that their convergence becomes slower for larger, since this
increases the condition number of the system matrix. Multigrid
methods [7] appear to be one possibility to circumvent many of
these problems, but their implementation is more complicated.

Recapitulating, we see that for dimensions the semi-
implicit scheme remains absolutely stable, but it is difficult to
take full advantage of this because of the problems to solve
the arising linear system as efficiently as it was possible in the
1-D case with the Thomas algorithm.

B. AOS Schemes

In order to address the above-mentioned problem let us
consider a modification of the semi-implicit scheme (46),
namely the additive operator splitting (AOS) scheme

(51)

Several points should be noted, as follows.

• The explicit scheme (45), the semi-implicit scheme (46),
and the AOS scheme (51) have the same first-order Taylor
expansions in . It is easy to see that all schemes are

approximations to the continuous
equation. From this viewpoint, all schemes are consistent
to the original equation. One should not make the mistake
to regard the AOS scheme as an algebraically incorrect
reformulation of the semi-implicit scheme: The explicit
scheme is also different from the semi-implicit one, but
it approximates the same continuous diffusion process.
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• The operators

(52)

describe 1-D diffusion processes along theaxes. Thus,
under a suitable pixel numbering they come down to
strictly diagonally dominant tridiagonal matrices which
can be inverted in an efficient and stable way by the
Thomas algorithm from Section III-B3.

• Since it is anadditive splitting, all coordinate axes are
treated in exactly the same manner. This is in contrast to
conventional splitting techniques from the literature [17],
[28], [30], [51]. They aremultiplicativesplittings such as
the locally 1-D (LOD) scheme

(53)

Since in the general nonlinear case the split operators do
not commute, the result of multiplicative splittings will
depend on the order of the one-dimensional operators.
This disadvantage will be discussed in Section VI in more
detail.

1) Does the AOS Scheme Create a Discrete Scale-Space?:
The discussed properties suggest that the AOS scheme is an
interesting candidate for an efficient discrete diffusion scale-
space. Thus, let us now assess its reliability by checking the
criteria D1–D6.

Many reasonings carry over from the 1-D semi-implicit
scheme: First we observe that exist,
since is strictly diagonally dominant. Also the continuity
of

(54)

in its argument is a direct consequence of the continuous
diffusivity and the construction of .

In the same way the symmetry of goes back to the
symmetry of . Note that the symmetry of is independent
of the pixel numbering: a permutation of their numbering
transforms into for some permutation matrix .
Since and there exists a pixel numbering such that

is transformed into a symmetric tridiagonal matrix just as
in the 1-D case, it is clear that has to be symmetric.

With the same reasoning as in III-B2, we know that not only
, but also has row sum 1. Thus, has also unit row sum.
To verify D4, we observe that is strictly

diagonally dominant, for all , and for .
Under these circumstances we may conclude from [29, p. 192]
that is nonnegative in all components. This implies
the nonnegativity of .

Let us now check D5 and D6 in one step. Since,
represent 1-D diffusion operators, it follows that

there exist permutation matrices, such that
is not only diagonally dominant, but also tridiagonal

and block irreducible.1 Within each irreducible matrix block,
we have a positive diagonal and nonnegative off-diagonals.
Applying again Varga’s theorem [42, p. 85], we conclude that
the inverse of each block contains only positive elements.
From this it follows that for some implies
that . Thus, the irreducibility of
carries over to , and D6 is satisfied.
In particular, since is constructed such that for
all , it is clear that contains only positive diagonal
elements. Therefore, D5 is verified as well.

These discussions show that the AOS scheme creates a
discrete nonlinear diffusion scale-space for all time step sizes.

C. Regularization

This section describes a simple method for calculating the
presmoothing in a way which is consistent with
the ideas presented above.

It is well known that Gaussian convolution with standard
deviation is equivalent to linear diffusion filtering ( ) for
some time . Thus we may use the (semi-)implicit2

scheme again in order to obtain a stable algorithm. Several
things make the situation even easier than in the nonlinear
setting.

• Frequently, is in the order of the pixel size. In this case
we may regularize in a single step by filtering once with
a time step size .

• The linear diffusion process is separable. Therefore, the
order of the one-dimensional approximations is not of
importance and we may also use a multiplicative splitting:

(55)

• The system in step can be decomposed into
tridiagonal systems with the same system matrix. Thus,
the LR decomposition needs to be done only once for an

-matrix of type

...
...

... (56)

with . Therefore, the main effort boils down
to performing times the same forward and back-
ward substitution step from the Thomas algorithm. This
requires only multiplications/divisions and

subtractions. Such an effort is comparable with the
recursive filters presented in [2], [3], and [52], but unlike
those Fourier-based methods, the algorithm presented
here allows an adequate treatment of the reflecting bound-
ary conditions and preserves the average grey value.

1Each of theN=Nl blocks represents the pixels where all components
except for thelth are identical.

2Semi-implicitand implicit are identical in the linear case.
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V. ALGORITHMIC STRUCTURE

A. AOS Algorithm

We may summarize our considerations in the following
algorithm for one AOS step in dimensions.

-

-

- -

B. Complexity

In order to assess the complexity of AOS algorithms, let us
consider dimensions and focus on terms of order .

From the preceding algorithm we recognize that only the
four vectors , , , and are required. Thus, since all
calculations may be performed in single precision, the main
storage effort is bytes. This is independent of the
dimension .

Table I summarizes the relevant computational requirements
for each step of the AOS algorithm. We observe that the effort
is proportional to the number of pixels and the dimension

. The total effort is only multiplications or divisions,
additions or subtractions, and look-ups in

a table. This is less than twice the typical effort needed for
an explicit scheme, a rather low price for gaining absolute
stability.

VI. EVALUATION

We have seen that AOS schemes with large time steps
still reveal average grey value invariance, stability based on
extremum principle, Lyapunov functionals, and convergence to
a constant steady-state. Thus, they are legitimate when being
considered as a pure discrete process which is not intended to
approximate a continuous process.

But does this mean that it is recommendable to consider
arbitrarily large time step sizes? In the extreme case: can one
filter an image in one step?

In this case, we should expect problems with those proper-
ties which a naturally linked to continuous ideas and which can
only be satisfied approximately by discrete schemes: rotational
invariance and accuracy.

TABLE I
MAIN OPERATIONS FORONE m-DIMENSIONAL AOS STEP

(M/D: MULTIPLICATIONS OR DIVISIONS; A/S: ADDITIONS OR

SUBTRACTIONS; LUT: LOOK-UP OPERATIONS IN A TABLE)

A loss of rotational invariance becomes visible as a prefer-
ence of certain directions, while a loss of accuracy becomes
evident in those cases where filtering with time stepdiffers
visually from times filtering with . So let us now check
these approximation effects by applying a 2-D AOS scheme
to two test images.

First we check the rotational invariance. Since the AOS
scheme is consistent to the original equation, we should expect
good rotational invariance for small spatial and temporal steps.

Fig. 1 is used as a test for rotational invariance. It depicts
a Gaussian-like image and its filtered versions. For
both the explicit and AOS scheme are visually indistinguish-
able. This step size is also the stability limit for the explicit
scheme, while the AOS scheme allows to increasefurther.
We see that for no significant changes appear. Thus,
AOS may be used with 20 times larger time steps than the
explicit scheme. On the other hand, even for the
deviations from a perfect circular structure are not very severe.

What about the accuracy? Fig. 2 depicts the filtering of a
brain image. The situation is similar as in Fig. 1: For
the explicit and the AOS scheme are undistinguishable. The
AOS scheme remains close to these results up to .
For we get more severe deviations: the filtering
effect becomes weaker. This is a typical behavior for implicit
schemes with large time steps: implicit techniques always
remain on the “safe” side (by orienting the diffusion on the
“smoother” future rather than on the “rougher” past), while
their deviation from the true solution becomes larger with
increasing step size. Thus, their filtering effect on the final
image at a specified time decreases with increasing time step
size. Again is a good compromise between efficiency
and accuracy.

After these visual inspections, we shall investigate the accu-
racy more quantitatively. To this end we perform a comparison
between the explicit scheme (45), the semi-implicit scheme
(46), and the AOS scheme (51). Since no analytical solution to
the CLMC equation is known, we have to use a good numerical
approximation to a test example as a standard for comparison.
In our case we took the explicit scheme with the small step
size and applied it 2000 times to the test image from
Fig. 2.

The linear system of the 2-D semi-implicit scheme is solved
by a Gauss–Seidel algorithm. Iterative methods of this type are
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Nonlinear diffusion filtering of a Gaussian-like test image (� = 8,
� = 1:5). (a) Original image,
 = (0; 101)2. (b) Explicit scheme, 800
iterations,� = 0:25. (c) AOS scheme, 800 iterations,� = 0:25. (d) AOS
scheme, 200 iterations,� = 1. (e) AOS scheme, 40 iterations,� = 5. (f)
AOS scheme, ten iterations,� = 20.

quite popular for nonlinear PDE’s in image processing [2],
[31], since they are easy to implement and they do not require
additional memory. Let the diffusion operator

(57)

be decomposed into the strictly lower triangular matrix, the
diagonal matrix , and the strictly upper triangular matrix

. Then the Gauss–Seidel method approximates the solution
of the semi-implicit scheme

(58)

by a sequence of vectors with

(59)

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Nonlinear diffusion filtering of a medical image (� = 2, � = 1). (a)
Original image,
 = (0; 255)�(0; 308). (b) Explicit scheme, 800 iterations,
� = 0:25. (c) AOS scheme, 800 iterations,� = 0:25. (d) AOS scheme, 200
iterations,� = 1. (e) AOS scheme, 40 iterations,� = 5. (f) AOS scheme,
ten iterations,� = 20.

(60)

Every second step we calculate the residue

(61)

and we stop the iteration process if its norm
satisfies

(62)

with some accuracy parameter or .
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TABLE II
COMPARISON OF NONLINEAR DIFFUSION SCHEMES

Table II compares the explicit scheme, the semi-implicit
scheme with accuracies and , respectively,
and the AOS scheme.

If denotes our reference solution (explicit scheme,
), then we calculate the relativeerror of an approximation
as

(63)

First we observe that the explicit scheme with
reveals a very small error, while the semi-implicit method with

is not only less accurate, but also slower for
and 0.5. For the semi-implicit scheme becomes faster
than the explicit one. On the other hand, the Gauss–Seidel
algorithm slows down for larger , since this increases the
condition number of the system matrix. Hence, the overall
CPU time per semi-implicit step increases with increasing.
If we relax the accuracy from to , the semi-
implicit scheme becomes faster, but theerror also increases.
For , the AOS scheme becomes the fastest method.

Interestingly, for , it is also more accurate than the
semi-implicit scheme with .

It is worth noticing that there is a fundamental difference
between errors in the AOS scheme and errors that are intro-
duced by an insufficient number of Gauss–Seidel iterations:
Unlike AOS errors which are compatible with the discrete
scale-space framework, Gauss–Seidel errors can violate these
requirements. Thus, properties such as the average grey level
invariance are no more satisfied in an exact manner. In
order to avoid these difficulties, one would have to apply
more Gauss–Seidel iterations, which will finally destroy all
efficiency advantages compared to the explicit scheme; see
also [31].

Fig. 3 gives a graphical representation of Table II, which
allows us to find the most efficient schemes for a desired
accuracy. We observe that for very high accuracy requirements
the explicit scheme is most appropriate.3 This is at the expense
of a height overall computational effort. On the other hand,
even relaxing the accuracy requirements to a relativeerror
of 1% does not permit to find a more efficient technique.
For errors between 1% and 1.7%, the semi-implicit scheme
with is fastest, and for errors larger than 1.7%, AOS
schemes become rapidly superior. In our previous experiments
we have observed that the accuracy of AOS with
appears to be tolerable for many applications. This corresponds
to an error of about 2.2%. In this case, AOS is almost 2.5 times
more efficient than the semi-implicit scheme with ,
more than 3.5 times faster than the semi-implicit scheme
with , and about 11 times more efficient than the
explicit scheme. Although these relations have been illustrated
by one example only, additional experiments have indicated
that these basic relations between explicit, semi-implicit and
AOS discretizations carry over to a large class of images: The
accuracy requirements of many practical problems allow an
efficiency gain by one order of magnitude. All one has to do
is to replace the explicit scheme by an AOS scheme with 20
times larger time step sizes.

It should be noted that the AOS schemes calculate the
average of operators of type . They describe
1-D diffusions with a step size . Since multiplicative
splittings such as the LOD scheme (53) use operators of
type , one can expect that they give even bet-
ter accuracy. However, multiplicative splittings for nonlinear
problems reveal one big disadvantage, which makes their use
in many image processing applications problematic: In the
general nonlinear case the split operators do not commute any
longer. Thus, the result of multiplicative splittings depends
on the order of the 1-D operators, and the grid axes are
treated differently. In practice, this means that these schemes
produce different results if the image is rotated by 90. Such an
undesirable effect is illustrated in Fig. 4. Since AOS schemes
apply the 1-D operators in parallel instead of sequentially, they
do not suffer from this limitation.

Moreover, most multiplicative splittings lead to a nonsym-
metric system matrix . This violates criterion D2 for

3One can achieve even higher accuracy by methods which are of second
order in time, for instance predictor–corrector techniques [46]. Such a high
accuracy, however, is rarely required in image processing.
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Fig. 3. Tradeoff between efficiency and accuracy of nonlinear diffusion
solvers. The data were calculated on the test image from Fig. 2, size

 = (0; 255) � (0; 308). Filter parameters:� = 2, � = 1. Stopping time:
T = 200. Hardware: one R10000 processor on an SGI Challenge XL.

(a) (b)

Fig. 4. (Non-)commutation of nonlinear diffusion operators. The difference
between filtering prior to rotation by 90�, and rotation prior to filtering is
depicted. Test image: Fig. 2 (� = 2, � = 1, � = 20, ten iterations).
(a) A multiplicative splitting such as LOD treatsx and y axes differently.
(b) Additive operator splitting (AOS) treats all axes equally.

discrete diffusion scale-spaces. For this reason, we have not
considered these approaches in the present paper.

Finally we check the relation between the computational
effort and the number of pixels. Table III shows the measured
CPU times on a single R10000 processor of an SGI Challenge
XL and on an HP 900-755, both for 2-D and 3-D images.

For small image sizes the computing times reveal good
proportionality to the overall number of pixel. This is what we
expect from theory. Because of Cache limitations, the CPU
time per pixel becomes slightly higher for huger data sets:
We also observe that this deviation from the linear scaling
behavior is machine dependent. The HP remains closer to the
linear scaling behavior than the SGI. On the other hand, with
its CPU memory of 1 Gb the SGI permits even to process data
sets of size 8192 8192 and 512 512 256.

TABLE III
MEASURED CPU TIMES FOR ONE AOS ITERATION

Three-dimensional data sets from medicine with typical
sizes such as 256 256 64 can be processed in less than 1
min per AOS iteration (both on the HP and the SGI). In many
practical applications less than ten iterations are sufficient for
the denoising of such data sets.

Recapping we have observed that—although the desired
approximation quality is of course purpose dependent—under
typical circumstances 20 times larger step sizes than the
stability limit of the explicit scheme appear reasonable. They
give an efficiency gain of a factor ten.4 Especially for large
data sets such as 3-D medical data this is often the difference
between not applicable and applicable. We are currently testing
our schemes for the filtering of 3-D ultrasound images and
preprocessing 3-D MR data for segmentation. In both cases
first results are encouraging.

VII. CONCLUSIONS

We have presented absolutely stable additive operator split-
ting (AOS) schemes for the nonlinear diffusion filter of Cattéet
al. and Whitaker and Pizer. These schemes satisfy all criteria
for discrete nonlinear diffusion scale-spaces and are easy to
implement in any dimension. Both computational and storage
effort is linear in the number of pixels. Experiments have
shown that under realistic accuracy requirements one can gain
an increase of efficiency by a factor of . This makes this
type of schemes attractive for applications such as medical
3-D data sets.

Implementations of AOS schemes on parallel architectures
are studied in [49]. These experiments demonstrate that it is
possible to gain a speed-up by another order of magnitude
by exploiting the intrinsic parallelism of AOS schemes. Last

4We have seen that an m-dimensional AOS scheme averages 1-D operators
with an effective step size ofm� . Thus, for higher dimensionsm one should
reduce the step size in order to have the same accuracy. However, since
explicit schemes also have to decrease the step size for largerm in the same
way, the factor10 remains valid for every dimension.
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but not least, there are also ways to generalize AOS schemes
to anisotropic diffusion filters with diffusion tensors; a first
proposal in this direction can be found in [46, Sect. 4.4.2].
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