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ABSTRACT

Magnetic Resonance Imaging (MRI) is a powerful diagnostic imaging modality for numerous
diseases due to its versatility and sensitivity to multiple tissue properties. Nevertheless, it
is often limited by the lengthy scan times required to collect the data necessary to form an
image and it suffers from different types or artifacts arising from multiple causes. For this
reason, reducing the scanning time has been one of the most active areas of research, but it

might come at the cost of aggravating the effects of certain artifacts or introducing new ones.

One way to reduce the acquisition time is by using Parallel Imaging techniques, which
acquire only a portion of the data and rely on the availability of different coil channels to
further reconstruct the images. However, these techniques require more complex reconstruc-
tion algorithms that result in the appearance of spatially varying noise maps. In order to
mitigate the impact of noise degradation in subsequent parameter estimation it is important
to characterize these noise maps. In particular, its exact characterization has been considered
computationally infeasible under a widely used technique termed GRAPPA, which directly
reconstructs the missing data in the sampled domain, the so called k—space. The reason lies
on the need to carry out a noise propagation analysis through the reconstruction pipeline
that involves very large covariance matrices. In this thesis, we show how to overcome this
computational load and obtain an exact noise characterization both for 2D and 3D GRAPPA
acquisitions by exploiting the presence of extensive symmetries and the block separability in

the reconstruction steps.

Another common approach to reduce the scan time is by means of Echo—Planar Imaging
(EPI). In contrast to Spin-Warp Imaging, where one acquires one line of the k—space per
excitation, EPI segments the acquisition into multiple shots by collecting several lines within
a single excitation. This modality offers major advantages over conventional Spin—Warp
Imaging, which include reduced imaging time, decreased motion artifacts and the ability
to image rapid physiologic processes of the human body. In particular, it has become the
standard modality in Diffusion MRI (dMRI). However, since dMRI is aimed at capturing the
microscopic movements of water molecules, it is sensitive as well to any kind of bulk motion
from the patient. Due to the way dMRI sequences are designed, the molecules motion is

encoded in the phase of the spins and consequently bulk motion results in phase corruption of



the images. If the motion differs from shot to shot, the resulting phase discrepancies lead into
ghosting artifacts in the reconstructed images. In this thesis, we propose an algorithm based
on a Maximum Likelihood formulation to iteratively reconstruct the images and estimate the

phase—maps under the assumption of linearity or smoothness.

In this dissertation we include the theoretical derivation of our models and the description
of the proposed algorithms to determine the parameters of interest. Finally, simulations,
phantom and in-vivo experiments are included to provide empirical support of the properties

of our methods, as well as to compare them to previous state of the art approaches.



RESUMEN

La Imagen por Resonancia Magnética (IRM) es una modalidad de imagen de gran importancia
para el diagnostico de numerosas enfermedades gracias a su versatilidad y sensibilidad a
multiples propiedades de los tejidos. Sin embargo, se ve habitualmente limitada por los largos
tiempos requeridos para muestrear los datos necesarios para la formacion de la imagen, asi
como por los distintos tipos de artefactos originados por diferentes causas. Por este motivo,
reducir los tiempos de adquisicién es uno de los principales objetivos de la investigacion
actual, pero su consecuencion suele implicar la amplificacién de los efectos indeseados de

cirtos artefactos o la aparicién de nuevos tipos de artefactos.

Una de las maneras para disminuir el tiempo de adquisiciéon es mediante el uso de técnicas
de Imagen en Paralelo, las cuales adquieren una fraccion de los datos requeridos y aprovechan
la disponibilidad de multiples antenas para reconstruir las imagenes. No obstante, estas téc-
nicas requieren algoritmos de reconstruccién mas complejos que se traducen en la aparicion
de mapas de ruido no uniformes espacialmente. Para mitigar el efecto de la contaminacién
de ruido en la subsiguiente estimacion de parametros, es importante disponer de una carac-
terizacion de dichos mapas de ruido. En particular, su caracterizacién exacta se consideraba
inviable computacionalmente para una de las técnicas mas utilizadas, conocida como GRAP-
PA. La explicaciéon reside en el tipo de reconstruccion realizada, que se basa en estimar los
datos no muestreados directamente en el dominio de adquisicion, el denominado k—espacio.
Sin embargo, estos datos deben ser transformados para obtener la imagen anatémica de inte-
rés, lo que obliga a llevar a cabo un andlisis de la propagacion del ruido a lo largo de todo el
procedimiento de reconstruccion, involucrando matrices de covarianza muy grandes. En esta
tesis se muestra como superar la limitacién dada por la carga computacional de cara a obtener
una caracterizacion exacta de los mapas de ruido para adquisiciones GRAPPA 2D /3D explo-
tando la presencia de numerosas simetrias en las matrices de covarianza y la separabilidad en

bloques de las mismas a lo largo de las distintas etapas de la reconstrucccion.

Una alternativa utilizada frecuentemente para reducir el tiempo de adquisicion es el uso de
secuencias de Imagen Eco—Planar (EPI). A diferencia de la Imagen estandar por “Spin—-Warp”,
que se basa en la adquisicién de una linea del k—espacio por cada excitacion, EPI segmenta

la adquisicién en multiples disparos muestreando varias lineas en cada excitaciéon. Gracias a
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ello, EPI ofrece algunas ventajas notables respecto a “Spin—Warp”, tales como la reduccién
del tiempo de muestreo, la disminucion de los artefactos relacioniados con el movimiento del
paciente o la capacidad para hacer imagen de procesos fisioldgicos que ocurren en intervalos de
tiempo muy breves. En concreto, EPI se ha convertido en la modalidad estandar en Difusiéon
por RMI (DRMI). No obstante, dado que DMRI busca captar el movimiento microscépico de
las moléculas de agua, es también sensible a cualquier tipo de movimiento del paciente. Debido
al modo en que las secuencias de DMRI estan diseniadas, el movimiento de las moléculas de
agua se codifica en la fase de los espines y, consecuentemente, el movimiento del paciente
se traduce en una corrupcién de la fase de las imagenes. Concretamente, si el movimiento
difiere de un disparo a otro, las discrepancias de fase resultantes dardn lugar a la aparicién
de artefactos de solapamiento en las imégenes reconstruidas. En esta tesis se propone un
algoritmo basado en una formulacion de Maxima Verosimilitud para, de manera iterativa,

reconstruir las imagenes y estimar los mapas de fase bajo la asuncion de linearidad o suavidad.

En esta tesis se incluyen los fundamentos tedricos para la obtencién de nuestros modelos asi
como la descripcion de los algoritmos propuestos para determinar los pardmetros de interés.
Finalmente, se incluyen los experimentos realizados por medio de simulaciones, phantoms y
adquisiciones in—vivo con el objetivo de proporcionar respaldo empirico de las propiedades
de los métodos presentados, asi como para compararlos frente a alternativas presentes en el
estado del arte.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Magnetic Resonance Imaging (MRI) is a discipline widely used in clinical practice. It is a
powerful imaging modility because of its versatility and sensitivity to a broad range of tissue
properties (Brown et al., 2014; Bernstein et al., 2004). Furthermore, a main thrust comes from
safety since it does not use ionizing radiation, rendering it a non—invasive technique. However,
the process of creating MR images results in the appearance of artifacts in the final display.
Moreover, despite the advances in hardware, it remains a relatively slow modality compared
to other alternatives such as Computarized Tomography (CT), and, in fact, slowness itself
is a source of image artifacts while procedures to speed up acquisitions are, as well, the
cause of additional distortions. For this reason, the knowledge of the causes and effects of
artifacts is vital for eliminating them and reducing the probability of an incorrect diagnose.
Better understanding can lead to better modelling of the image formation, and consequently

to ameliorate the quality of the images. This is the purpose in the present Thesis.

We define artifacts as a misrepresentation of the true anatomy or tissue characteristics
(Henkelman, 1987). If not detected, they can introduce pseudo-lesions, degrade image quality
or provoke the need to reacquire data. The observed distortion can have its origin in multiple
sources related to hardware imperfections, physical /temporal constraints, patient motion or
incorrect modelling of the acquisition process. Moreover, their effects might be subject to
the particular imaging scenario, observing different types of degradation depending on the
scanner, the imaging sequence or the reconstruction pipeline. For this reason, it seems likely
that there will not be a universal methodology for correcting all artifacts in any kind of

situation. Instead, a toolbox of multiple techniques developed for different scenarios seems a
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more reasonable approach. This way, the choice of which tool to apply would be based on the
particular circumstances of the acquisition at hand. Hereby, we provide a brief description of

the main sources of artifacts in MRI:

1. By inhomogeneties: the formation of the image in MR acquisitions is based on the
codification of the position of the spins in their frequency and phase (see Fig.2.1.1). For
that purpose, the magnet of the scanner is assumed to create a spatially homogeneous
magnetic field, but this assumption is often violated. First of all, magnets are not ideal
and the presence of different metal components within the scanner, the room or even the
building can distort the constant magnetic field. Even though special shimming coils are
used to compensate for these effects, slight variations of the By, field can still be observed
within the field-of-view. Second, biologic tissues behave differently in the presence of
a magnetic field, dispersing (diamagnetic materials) or concentrating (paramagnetic or
ferromagnetic materials) the field. As a result of the magnetic field distortions, the
oscillating frequency of the spins varies spatially. These frequency variations, in turn,
result in a signal loss from T2*-dephasing and in a spatial mismapping of the spins in
the excited object. One particularly challenging scenario arises from the presence of
metal objects and implants, which can introduce notable distortions in the magnetic
field that can lead to signal voids near them (Wiens et al., 2018).

Related to this, we can also mention the problems associated to B, inhomogeneties.
When one increases the strength of the magnet, the Larmor frequency increases as
well, resulting in a reduction of the wavelegth of the Radio—Frequency (RF) pulse, also
known as B1 pulse. If the wavelength becomes comparable to the sample being imaged,
the intensity of the observed Bl-field will vary spatially, which in turn modulates the
measured signal. Furthermore, dielectric effects might appear causing the emergence of
constructive and destructive interference patterns, which manifest as dark/shade areas
at the center of the image (Collins et al., 2005). An approach used often to avoid these
artifacts consists of using specially designed pulses, called adiabatic pulses, which are
insensitive to changes in the magnitude of B: under certain conditions (Tannus and
Garwood, 1997). On the other hand, a common strategy in quantitative MRI to deal
with the B} inhomogeneities is to measure the B map and further correct the intensity

inhomogeneities it introduces (Sacolick et al., 2010).

2. Chemical shift: it refers to the small shifts in the resonant frequency of the spins
due to the different chemical environments they observe (Liang and Lauterbur, 2000).
Although chemical-shift artifacts can appear at the interface of any two substances
having different Larmour frequencies, probably the most prevalent is the case of fat
protons. The hydrogen H'! protons of fat are nestled with long-triglycerides and covered

by electron clouds which partially shield them from the external field. It is precisely
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Figure 1.1: (a) Water and fat spectrum. (b) Effect of chemical shift misregistration showing the shift of the
fat signal along the readout direction.

the different shielding that explains the frequency shift from fat protons to a lower
frequency with respect to that of water protons. Once again, since we encode the
spatial position in the oscillating frequency of the spins, this subtle difference will result
in a displacement of fat protons with respect to water protons originally placed at the
same location. Depending on the type of sequence, the spatial displacement could be
observed in any encoding—direction. For example, for spin—warp imaging, where one
line is acquired per excitation, the phase differences accumulate along the Frequency—
Encoding (FE) direction. On the other hand, for Echo-Planar Imaging (EPI), where
all the lines are collected after a single excitation, chemical-shift effects would be much
larger along the Phase-Encoding (PE) direction. Since the water-fat displacement is
inversely proportional to the bandwith, it can be reduced by increasing the second.
However, this comes at the expense of reducing the Signal-to—Noise ratio (Signal to
Noise Ratio (SNR)), so a compromise between noise enhancement and artifact removal
needs to be reached. As an alternative, fat suppression techniques can be used, such as
those based on inversion recovery pulses, where the signal originated from fat protons

is nulled.

3. Motion: as opposed to CT or ultrasound imaging, where acquisition times are in the
range of miliseconds to seconds, MR acquisition can take up to minutes. For this reason,
motion is probably the main source of artifacts in MRI, resulting in different types of
distortion depending on the direction of the motion and the imaging modality. Amongst
the most problematic physiological motions we can cite blood flow, respiratory motion,

cardiac motion or gross movements (rigid or elastics) of the body. However, some of
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these artifacts might in turn be of interest and MRI can be used to provide image
contrast sensitive to particle motion such as in diffusion or blood flow imaging. In
order to mitigate its effects, the most basic approach consists of preventing the patient
from moving by means of training, stabilization or sedation. Since this is not always
possible, common approaches to minimize the impact of motion include (Zaitsev et al.,
2015) supression of the signal from moving tissues through spatial saturation pulses;
gradient moment nulling aimed at nulling the phase acquired by spins moving at a
constant velocity; faster imaging sequences such as those using EPI or Parallel Imaging
(PI): motion insensitive sequences, usually based on oversampling the center of k—space
such as Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction
(PROPELLER) (Pipe et al., 2002); and triggering/gating for cyclic types of motion,
where different points are acquired within the same window of the cardiac cycle or
breathing position. Finally, post—processing techniques can be used to estimate and
correct for motion, either using callibration data termed “navigator echoes” or relaying

on iterative approaches that try to minimize some measure of artifacts.

4. Fourier Transform: in MRI we do not acquire the data directly in the image space,
but in the frequency domain, the so—called k—space. In order to obtain the image, the
Inverse Fourier Transform (iF'T) needs to be applied and this processing can introduce
undesired distortions (Brown et al., 2014). Probably the most well-known artifacts
within this group are the Gibbs artifac and the aliasing artifact. The first, also called
ringing artifact, arises from the truncation of the acquisition in k—space. Theoretically,
in order to represent a support—limited image with abrupt transitions, infinite frequency
components are required. However, in practice this is unfeasible, and the need to
truncate the number of acquired components manifests as undershoot and overshoot
oscillations at high—contrast interfaces. This effects can never be entirely removed,
but they can be minimized either by increasing the number samples or by filtering the

acquired data with a smoothly decreasing window, as we observe in Fig.1.2.

On the other hand, aliasing artifacts arise from the violation of the Nyquist sampling
theorem, which states that the digital sampling rate must be at least twice the largest
frequency component contained within the sampled signal. This is the case when the
defined Field Of View (FOV) is smaller than the object being imaged, and it results in
a folding over of the anatomic parts into the area of interest (see Fig.1.3 for a schematic
depiction in 1D). Common approaches to correct for this artifact consist of either in-
creasing the FOV and further discarding the undesired samples (No Phase Wrap) or
using spatial saturations pulses outside the FOV to eliminate the signal from those tis-
sues. Alternatively, Reduced Field Of View (rFOV) sequences aim at directly exciting a
certain portion of the object by careful design of the imaging gradients in combination
with the RF pulse.
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—————————— Model
—— Unfiltered image
——Filtered image

Figure 1.2: The ideal model is a rectangular function. However, the reconstructed image presents ringing
artifact due to truncation. By applying a Hanning filter, it can be notably reduced af the expense of losing

resolution. Figure obtained from (Brown et al., 201/4).
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Figure 1.3: The effect of respecting or violating the Nyquist sampling theorem on Fourier reconstructions.
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Figure 1.4: Eddy currents effects during the EPI readout. (a) An eddy current in the slice selection direction
is equivalent to a constant offset in the BO—field, which introduces a linear phase ramp along the phase—
encoding dimension in the acquired k—space and results in a shift in the image-space. (b) An eddy current
in the FE direction introduces an asymmetry in the positive-negative lobes of the FE gradients. This results
in a shearing in the image. (c¢) An eddy current in the phase—encoding direction increases the size of the
phase—encoding blips and changes the sampling density along that dimension. This results in a scaling in the

image.

5. Eddy currents: according to the Faraday-Lenz Law of electromagnetism, the varying
magnetic field originated by turning on and off the gradient pulses induces currents in
the surrounding conductors, which in turn generates their own magnetic fields that may
persist after the primary gradients are switched off (Jezzard et al., 1998). Furthermore,
eddy currents scale up with the strength of the magnetic gradient. For this reason,
Diffusion MRI (dMRI) is a particular scenario where they can cause severe distortions.
First of all, since they modify the effective diffusion gradients, the b—value might be
slightly different from expected (K. Jones, 2011), as seen in Fig.1.5.

Second, the residual eddy current from the diffusion gradients may persist during the
data acquisition window (Le Bihan et al., 2006). This can not only introduce signal
losses due to improper spin rephasing, but might also deviate the imaging gradients
used for frequency and phase—encoding from their original value. This mismatch would
result in different types of distortion such as scaling, shearing or shifts, which need to be
taken into account before further processing. Otherwise, since computing the diffusion

coefficients requires several diffusion—sensitized images subject to different distortions,
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Figure 1.5: (a) Eddy currents modify the shape of the diffusion gradients (red) with respect to the desired one
(green). (b) In order to obtain the expected shape one can make use of the pre—emphasis approach modifying
the applied gradient (blue) to obtain the desired response (red). Figure obtained from (Le Bihan et al., 2006).

one can incur in misestimating them.

Third, since the shape of gradient pulses is slightly modified because of eddy currents,
the acquisition window might not be completely centered around the echo, as in Fig.1.6.
If we are using an EPI sampling scheme, as is often the case in dMRI, the back—and-
forth trajectory in k—space creates a shift between the position of the echo between the
odd and even lines. As a consequence, we introduce a modulation along the phase—
encoding direction in k—space, which will manifest as a ghosting halfway across the
image once the iFT is applied. Finally, commons strategies to reduce the eddy currents
include using “self-shielded” gradient coils designed to reduce the amount of conductive
surfaces, using gradient pre-emphasis to modify in advance the shape of the gradients
so they have the desired waveform after eddy currents using a reference scan to estimate

the phase shifts and further correct them.

6. Noise: as any other measurement process, MR imaging is subject to the undersired
presence of a randomly distributed noise component which is uncorrelated with the
original signal. The main sources for these perturbations are thermal noise, mainly
generated from the imaged subject, and electronic noise, originated by the stochastic
motion of free electrons in the RF coils. One of the objectives of MRI is precisely to
provide sufficient signal relative to noise, which is measured by the SNR. It has been
proven (Macovski, 1996) that the SNR is affected by certain factors as in the following
equation:

SNR o Vs (1.1)
VBW
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Figure 1.6: (a) Eddy currents modify the shape of the diffusion gradients (red) with respect to the desired one
(green). (b) In order to obtain the expected shape one can make use of the pre—emphasis approach modifying
the applied gradient (blue) to obtain the desired response (red). Figure obtained from (Le Bihan et al., 20006).

First, we observe that the SNR increases with the voxel size due to the larger amount of
signal present at each location of the image. Second, we observe that it is proportional to
the square root of the acquisition time t; = n,/BW. The bandwith of the receiver, BW,
indicates the rate at which the received temporal signal is sampled. In order to respect
the aforementioned Nyquist Theorem, the signal is filtered previous to the analog-digital
conversion, setting the cut-off frequency to half the bandwidth. As a consequence, the
amount of allowed noise into the system increases with the bandwidth BW of the filter.
On the other hand, n, refers to the number of acquired samples. As we have previously
described, the data is acquired in the k-space and the FT is applied to obtain the
final image. Because of the averaging performed by the FT, increasing the number of
points will in turn reduce the amount of noise. Finally, in order to cope with noise,
the usual processing consists in finding a suitable probability distribution to model it,
estimating the parameters that fully characterize that distribution and applying some
sort of filtering to remove or reduce the noise in the final image (Aja Ferndndez and

Vegas Sanchez-Ferrero, 2016).

1.2 Objectives

The main objective of this Thesis is to better characterize the distortion introduced by
two different types of artifacts in accelerated acquisitions and to develop the tools
to deal with them in a feasible computational time. Specifically we will focus on
(a) the estimation of exact g—factor maps in 2D /3D GeneRalized Autocalibrating
Partial Parallel Acquisition (GRAPPA) and (b) the reconstruction of multi—shot

dMRI suffering from intra—shot motion.



1.3. Methodology

The main objective can be divided in the following individual objectives:

1. To propose an exact and time—efficient method for the estimation of g—factor maps in
2D GRAPPA acquisitions under the assumptions of stationarity and uncorrelation in
the original undersampled k—space acquisition. The proposed algorithm will carry out
a noise propagation analysis through all the steps in GRAPPA reconstruction and will

exploit the symmetries in the involved matrices as well as the separability into blocks.

2. To extend the method to the more challenging case of 3D acquisitions due to the greater
flexibility offered by the possibility of undersampling along the two phase—-encoding
directions. Particularly, memory requirements can be a limiting factor since the 3D

GRAPPA reconstruction introduces k—space correlations along the three dimensions.

3. To propose a joint image reconstruction and phase map estimation method for Multi—
Shot (ms)-EPI dMRI under the assumption of intra—shot rigid motion. Exploiting the
well known fact that rigid motion results in linear phase maps corruption, we propose
a maximum likelihood formulation that iteratively estimates both the parameters char-

acterizing the linear phase corruption and the reconstructed image.

4. To extend the previous algorithm to the more complex scenario of non-rigid subject
motion. In order to model smooth non-linear phase variations on top of the linear
component, a phase-map defined with a B-spline will be proposed. Similarly, a joint
algorithm will alternate between the estimation of the linear component parameters,

the parameters characterizing the B—spline and the reconstruction of the image.

1.3 Methodology

In this section we describe the methodology followed throughout this thesis, consisting in the

following steps.

1. Identification of a limitation or possible source of inaccuracies: in the case
of noise map estimation for GRAPPA reconstruction, it was observed that analytical
methods were based on an approximate reconstruction that was only equivalent in the
case of uniform subsampling patterns, rendering inexact the noise map obtention. On
the other hand, state—of-the—art methods for navigator—free ms—EPI have explored dif-
ferent assumptions about the phase corruption maps, such as smoothness, low-rankness
or limited support. However, to the best of our knowledge, the linearity associated to
rigid—motion has only been considered in navigated strategies, either using a pre—scan
(extra—navigated sequences) or introducing redundancy in the k—space sampling (self—

navigated sequences).
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2. Theoretical modelling: the aim si to design a framework where the observed limita-
tion is taken into acount and overcome. Regarding the g—factor estimation in GRAPPA
acquisitions, the inaccuracy derived from the pseudo—equivalent formulation can be
overcome by a noise—propagation analysis through all the steps in the reconstruction
pipeline. In order to deal with the big size of the matrices involved in the process and
provide a feasible solution with respect to computation time and memory requirements,
the symmetries and the block separability are deeply exploited. As for the ms-EPI
dMRI images under rigid-motion corruption, a joint maximum likelihood formulation
is posed that alternates between the estimation of the parameters characterizing the
linear phase maps and the reconstruction of the image following a greedy fashion. Key
to successful reconstruction is the initialization to avoid local minima, which we propose

to obtain based on a shot—by-shot SENSE reconstruction.

3. Validation: in order to test our methods, we first partly validated the individual
modules that composed them, and later validated them globally, which in somes cases
required to insert the developed algorithm as a segment of a multi-step reconstruction
pipeline that comprised different post-processing stages. To do so, we have used three
different types of data—sets, whose particular details are thoroughly described in the

corresponding chapters:

e Synthetic data—sets: simulated data—sets obtained from open databases or gener-
ated using the XCAT tool (Segars et al., 2010; Wissmann et al., 2014). In these
scenarios we could exploit the knowledge of both the exact image to reconstruct
and the undesired corruption, either regarding noise degradation or patient mo-
tion. Under this ideal conditions, one can test the range of validity of the developed
algorithm, but it is important to notice that real acquisitions might deviate from

our simplified assumptions.

e Real phantom data—sets: in an attempt to isolate the source of artifacts under
study while recreating a realistic acquisition, we have scanned several phantoms
varying different parameters of the acquisition with the aim of observing to what
extent our methods can provide a reasonable reconstruction. By proceeding this
way, we were still able to obtain a silver ground-truth we could compare our

reconstructions to.

e In—vivo data—sets: last, in order to test the clinical applicability of the proposed
algorithms, we acquired data from human subjects, again varying the acquisition
parameters to test the soundness of our proposals. These datasets will be described

in detail in the corresponding chapters.

4. Diffusion of our contributions: with the aim of sharing with the community our

improvements with respect to the state—of-the—art, the current disertation is presented
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describing the motivation for our studies, the theoretical framework, the detailed algo-
rithms and the experiments carried out. Likewise, derived from the work described in
this thesis, several publications have been submitted and presented in different journals

and conferences.

1.4 List of publications

In pursuit of the aforementioned objectives, the following contributions have been published:

e Publications in indexed international journals:

— Rabanillo, 1., Aja-Fernandez, S., Alberola-Lépez, C., and Hernando, D. (2018a).
Exact calculation of noise maps and g -factor in GRAPPA using a k—space analysis.
IEEE Transactions on Medical Imaging, 37(2):480-490.

— Rabanillo, 1., Zhu, A., Aja-Fernandez, S., Alberola-Lopez, C., and Hernando, D.
(2018c). Computation of exact g-factor maps in 3D GRAPPA reconstructions.

Magnetic Resonance in Medicine.
e Publications in Conference and Workshop Proceedings:

— Rabanillo, I., Hernando, D., and Aja-Fernandez, S. (2016a). Variation of noise in
multi-echo MRI acquisitions using Parallel Imaging. Proceedings of the 33rd Euro-
pean Society for Magnetic Resonance in Medicine and Biology Scientific Meeting
(ESMRMB ’16), Vienna, Austria,, 29:400.

— Pieciak, T., Rabanillo, I., and Aja-Fernandez, S. (2018). Bias correction for non-
stationary noise filtering in MRI. In 2018 IEEFE 15th International Symposium on
Biomedical Imaging (ISBI)

— Rabanillo, 1., Holmes, J., Guidon, A., Aja-Fernandez, S., Alberola-Lopez, C., Reeder,
S., and Hernando, D. (2016b). ADC measurement accuracy in quantitative diffu-
sion phantoms using reduced field-of-view and multi-shot acquisitions. In Proceed-
ings of the 33rd International Society of Magnetic Resonance in Medicine Work-
shop on Breaking the Barriers of Diffusion MRI.

— Zhang, Y., Holmes, J., Rabanillo, I., Guidon, A., Wells, S., and Hernando, D.
(2018). Quantitative diffusion MRI using reduced field-of-view and multi-shot
acquisition techniques: Validation in phantoms and prostate imaging. Magnetic

Resonance Imaging, 51:173-181.
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— Rabanillo, 1., Sanz-Estebanez, S., Aja-Fernandez, S., Hajnal, J., Alberola-Lépez,
C., and Cordero-Grande, L. (2018b). Joint image reconstruction and phase cor-
ruption maps estimation in multi-shot echo planar imaging. In Proceedings of the
21st International Conference on Medical Image Computing €& Computer Assisted
Intervention. International Workshop on Computational Diffusion MRI (MIC-
CAI/CDMRI 2018).

— Sanz-Estébanez, S., Rabanillo, 1., Royuela-del Val, J., Aja-Fernandez, S., and
Alberola-Lépez, C. (2018). Joint groupwise registration and ADC estimation in

the liver using a b-value weighted metric. Magnetic Resonance Imaging, 37:1-9

1.5 Structure of the thesis

This dissertation includes a chapter dedicated to present the backfround, which will provide

context for the core of our work. Our contributrions are centered on the problem of noise
map estimation in GRAPPA acquisitions, both for 2D (Chapter 3) and 3D (Chapter 4), and
the reconstruction of ms-EPI in dAMRI under shot-to—shot phase corruption (Chapter 5). It

is organized as follows:

12

e Chapter 2 briefly describes the fundamentals of MRI, PI and dMRI. The objective is

to present an overview of the image formation and the underlying physical process in
order to better understand the impact of both noise corruption and patient motion in

the reconstructed final image.

Chapter 3 provides an overview of the noise ang g-factor estimation problem in 2D
GRAPPA reconstructions, describing the sources of inexactitude in the current state—
of—the art methods. Additionally, we provide the details of the proposed algorithm
to overcome these limitations and present analytical, simulation and in—vivo results to
demonstrate the ability of our method to exactly estimate the noise maps under the

assumption of stationarity and uncorrelation in the original k—space.

Chapter 4 presents an extension of the previous method to the more complicated case
of 3D GRAPPA reconstructions, where the presence of two phase—encoding dimensions
offers greater flexibility for undersampling and poses an increased challenge regarding
memory requirements and computation time. An analytical proof of the exactitude of
the method is provided together with simulations and in—vivo experiments to support

the mathematical results.

Chapter 5 introduces the problem of image reconstruction in ms—EPI for dAMRI, where

different shots present phase corruption discrepancies that result in ghosting artifacts.



1.5. Structure of the thesis

Initially, we present an iterative algorithm that jointly estimates the phase maps and the
final image under the assumption of rigid—-motion, or equivalently, under the assumption
of linear phase maps. Additionally, we extend this philosophy to the more complex case
of non—linear phase corruption derived from non-rigid motion, such as pulsatile motion.
Finally, we present simulations to test the ability of the method to reconstruct diffusion

images under varying levels of noise corruption, number of shots and phase distortion.

Chapter 6 concludes the dissertation with the discussion and final conclusions of the
presented work, including the main contributions of this thesis, the limitations of our

proposals and suggestions for future lines of research.
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CHAPTER

TWO

BACKGROUND

2.1 Magnetic Resonance Imaging Fundamentals

Magnetic Resonance (MR) is based on the quantum property of the nuclear spin and its
interaction with an external magnetic field termed Bo. However, even though the spin is a
quantum effect, the phenomena of MR can be fully explained by classical mechanics (Hanson,
2008). In the presence of a static magnetic field, the spins precess around ﬁo at an angular

frequency known as the Larmor frequency and given by:

Wy = 7”§0 (2.1)

o’
where 7 is a nucleus—specific constant known as the gyromagnetic ratio. When no external
magnetic field is applied, spins point in all the directions with equal probability. Nevertheless,
when the polarizing Bo-field is used, the spins show a slight tendency to point along the
direction given by the main magnetic field, creating a net magnetization aligned with By, as

shown in Fig.2.1.

In order to generate a measurable signal, we must tip the magnetization vector away from
the external field direction. This is done by applying, during a short time, a time-varying
RF pulse, B:(t). This pulse is perpendicular to the Bo-field and its radiofrequency wgp is
tuned to the Larmor frequency, being modelled as (Liang and Lauterbur, 2000):

B (t) = B(t) - [cos(wpp - )X — sin(wgp - 1)¥] , (2.2)
where Bf(t) defines the envelope of the pulse. The effect of the net magnetization vector

M = [M,,, M,, M.] under the application of a magnetic field ﬁl(t) is modelled by the Bloch

equation:
dM 1B M, X+ My (M, + M%)z
T T ’

(2.3)
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Figure 2.1: The figure shows the same situations in both 2D and 3D. In the 3D case, to better illustrate their
directions, all the spins share their origin. In the absence of an external magnetic field, the spins point in all
directions with equal probability. However, when the P:O is applied, they tend to align with it, although all

directions remain possible. Figure obtained from (Hanson, 2008).
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Ny

Figure 2.2: Illustration of how the application of an RF pulse along the & direction tips down the net
magnetization around , both in the rotating frame of reference (a) and the static frame of reference (b).
We also show how this precession around the RF pulse affects the whole distribution of spins in (c¢). Figure
obtained from (Brown et al., 2014) and (Hanson, 2008).

where B = By +§1(t) is the overall magnetic field, MY is the thermal equilibrium value of M
when only ]§0 is present, and 77 and T5 are the time constants characterizing the relaxation
process we will explain later on. Due to the shortness of the RF pulse, the last two terms can
be dropped for the study of its effects. Thus, solving the previous equation shows that the
effect of the B;—field is to rotate the spins distribution as a whole around it. The amount of
rotation, characterized by the flip angle o, depends on the strength and duration of the RF
pulse. A common approach at this point is to get rid of the effect of the Larmor-precession,
which is done by defining a rotating frame of reference synchronized with the spins precession
frequency. In Fig.2.2 we show the effect of the RF pulse in both the static and the rotating

frame of reference.

After the perturbation from its equilibrium, the magnetization spin system returns to that
state following the laws of thermodynamics. This process, known as relaxation, see Fig.2.3,
is modelled by the aforementioned Bloch equation given in Eq.2.3. Operating in the rotating

frame of references [2/,y/, 2], the last terms explain the two different phenomena that take

place:
dM,, _ M+M?
dt Ty
dM;/y/ _ Mz’y’ (24)
i  —

First we have the longitudinal or spin—lattice relaxation by whom the longitudinal net
magnetization recovers in order to realign with the static By—field:

t

Mo (t) = M° - (1 _ e‘ﬁ> Mt =0)-¢ 7. (2.5)

Second we have the transverse or spin—spin relaxation, which refers to the decrease of the
transverse component of the net magnetization due to the dephasing of the spins by the small
local contributions to the magnetic field that vary from spin to spin:

t

Mxy/(t) = Mx/y/<t = 0) e Tz, (26)
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Spin-spin relaxation (T2 decay) Spin-lattice relaxation (T1 recovery)
5 \ 5|
© ©
= €l /shortT:
& \ 37% long T { 2
2 1 \short T2 E
ot =
S g
. 3 ;
Time Time

Figure 2.3: Relaxation of both the transverse and longitudinal components after the application of a 90°-RF
pulse for different constant decays. Figure obtained from (Suetens, 2002).

Besides the loss of coherence caused by the different nuclear environment observed by
each spin, BO-field inhomogeneities will introduce further dephasing, which can be modelled

by a decay constant Ty = (7y - ABmhom)_l. This gives rise to a modified version of the previous
equation:

11 1 s

Tj*:E+T2,—>Mxy/(t):Mx/y/(t:O)~e 2, (2.7)

These relaxation constants, as well as the proton density, are parameters characteristic

of each tissue. By properly setting two parameters from the MR acquisition sequence, the

Echo Time (TE) and the Repetition Time (TR), we can weight our image in order to provide

contrast sensitive to any of these three parameters.

2.1.1 Signal localization

Using RF pulses allows us to create a time-varying signal in the transverse plane that we
can measure. However, the receptor will observe the superposition (the integral) of the signal
coming from all the excited spins. For this reason, it is necessary to localize the position of
the spins in order to differentiate local contributions from different parts of the object. There
are two key types of spatial localization: selective excitation and spatial encoding. Both of
them are based on the use of a gradient field and exploit the Fourier relationship between
the image—space and the k—space. A gradient By can be defined as a spatial linearly varying
magnetic field

Ba(R) = (G,R) = G, X + G,Y + G.Z. (2.8)
The application of such a gradient modifies the precession frequency of the spins of the object
along its direction

w(R) = wo +7Ba(R), (2.9)

and as a consequence, the received signal would be

s(t) = / My (R, 1) Jo (G Ryar” (2.10)
Q
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—

Defining the k—space trajectory k(t) as
K(t) = - / G(t)at, (2.11)
0

we can express the received signal as:

s(t) = / Mgy (R, t)e2riFOR) (2.12)
Q

We observe that the signal s(¢) is nothing else but the three-dimensional Fourier Transform
(Fourier Transform (FT)) evaluated at location K(t). The idea behind spatial encoding is to
use gradients to go through the different locations of k—space while we sample the received
signal. Further, we will need to solve the inverse problem of reconstructing the MR image
from the sampled trajectory in k—space, whose difficulty will precisely depend on the way we
sampled it. Equivalently, this philosophy can be applied in excitation (Pauly et al., 1989),
where one would make use of the gradients to travel through k-space during the application
of the RF pulse. It can be proved that the three-dimensional Fourier Transform of the RF
pulse defined along the travelled k—space would define the excitation profile. This is the
basis for slice selection, but it can be used for much more complex patterns, such as in rFOV

sequences (Saritas et al., 2008).

2.2 Accelerated Imaging

As we have already mentioned, MRI is a slow modality, which causes the resulting images
to suffer from different types of artifacts. For this reason, reducing the scanning time has
always been one of the major goals of the research community. In this section we present two
of the most successful and widely used strategies for that purpose: Parallel Imaging (PI) and
Echo—Planar Imaging (EPI).

2.2.1 Parallel Imaging

PI (Larkman and Nunes, 2007; Deshmane et al., 2012) has been possible thanks to the hard-
ware advances in multichannel phased arrays. These arrays have been available since the late
1990s (Roemer et al., 1990), although they were initially developed to improve the SNR (Con-
stantinides et al., 1997). By arranging the different coils (channels or antennas) in such a way
that covers the desired FOV, the images resulting from each receiver can later be combined.
As a result of the image combination, the noise can be reduced and thus the SNR of the final

image is improved.
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(a) Head Coil

Figure 2.4: (a) Example of a head coil for MRI acquisitions. (b) Distribution of an 8-coil system around the
object. (c) Spatial sensitivity of a single coil. Figure obtained from (Aja Ferndndez and Vegas Sanchez-Ferrero,
2016).

Data Sampling and Image Reconstruction

In traditional MRI one samples a single k—space line per TR and thus multiple excitations are
required to acquire the whole slice. Moreover, this needs to be repeated for as many slices we
need for the imaged 3D volume. As a consequence, the total acquisition time is proportional
to the number of lines and slices needed to cover the object. Nevertheless, soon after the
introduction of phased arrays, researchers noticed that their use could be exploited to reduce
the scan time as well (Hutchinson and Raff, 1988; Carlson and Minemura, 1993).

In PI data is sampled simultaneously at L different coils distributed around the object.
In such a way, the signal they measure varies as a function of position (the closer they are to

a location, the stronger the signal they record), as we depict in Fig.2.4.

Mathematically, the coils can be characterized by their sensitivity map Cj(x), allowing

to model the signal S;(x) they receive as:
Si(x) = Cy(x) - S(x), l=1,...,L (2.13)

where S(x) denotes the original image. In order to reduce the scan time, one would skip
the acquisition of a portion of the lines in the original k—space, which as we have already
mentioned, results in an aliasing in the image domain (see Fig.2.5). However, the availability
of the differently weighted data at each antenna allows us to recover the missing data. Multiple

sampling and reconstruction strategies have been proposed, but probably the most well-known

are SENSE and GRAPPA.
In the SENSitivity Encoding (SENSE) Cartesian philosophy the acquired signal is mod-

elled by means of a matrix operation: (Pruessmann et al., 2001)
¥ = EX = AFS% (2.14)

where X is the true MR image and y is the undersampled k—space data acquired by all the

coils, defined as single column vectors. The encoding operator E consists of several steps.
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Figure 2.5: One way to accelerate the acquisition is by skipping some lines in the k—space. In the example,
we apply an acceleration rate R = 2, which in the image space introduces aliasing. Figure obtained from
(Aja Ferndndez and Vegas Sdanchez-Ferrero, 2016).

First we multiply by the coil sensitivities S =[Sy ... S L]T. Then we transform into the Fourier
domain using F = I, ® F, where I, refers to the identity matrix of size L x L, F; is the
Fourier transform matrix and ® denotes the Kronecker product. Last we undersample using
a mask A selecting the acquired k-space positions, which are the same for all coils. In case we
are using non—Cartesian trajectories an extra operator to perform the degridding operation
needs to be incorporated into A. The acceleration factor R will be given by the ratio of the

acquired and reconstructed k-space positions.

The reconstruction problem can then be posed as the solution of the previous linear system
and given that the acceleration rate R is smaller than the number of available channels L,
it can be solved in a minimum squared error sense. Under regular subsampling pattern,
the reconstruction can be highly accelerated by operating directly in the image space, where
several replicas of the image overlap. Therefore, we can solve pixel-wise the system for the

overlapping locations, as depicted in Fig. 2.6.

This can be done either analytically or iteratively, but in both cases there is an exact
way to compute the noise maps in the reconstructed image. Moreover, since the sensitivity
profiles of the channels vary across the image, the noise standard—deviation in the final image

will not necessarily be stationary anymore.

However, SENSE requires the knowledge of the sensitivity profiles C)(x), which are mea-
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coil 1

coil 2

coil 3

coil 4

Figure 2.6: Example of a regular subsampling pattern with acceleration rate R = 2 and how each pair of
pixels overlap in the acquired data. This can be exploited for fast reconstruction by operating pixel-wise

directly in image-domain. Figure obtained from (Aja Ferndndez and Vegas Sdanchez-Ferrero, 2016).
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Figure 2.7: TIllustration on how the GRAPPA kernel is applied to reconstruct the missing data from the
acquired points from all the channels for the case of an acceleration rate R = 2 with 4 coils. Figure obtained

from (Aja Ferndndez and Vegas Sdnchez-Ferrero, 2016).
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sured usually from a pre-scan. Since this can be time inefficient and subject to variability dur-
ing scanning, there was interest in developping a self-calibrated strategy that can reconstruct
the image from the data itself. To this end, GRAPPA proposes to solve the reconstruction
problem directly in k—space (Griswold et al., 2002). In order to do so, the authors propose to
estimate the skipped k-space lines and then apply the inverse Fourier Transform to obtain
the coil images, which will be further combined to form the final reconstructed image. The
idea behind GRAPPA comes from the observation that the coil multiplication in the forward

model described in Eq.2.15 becomes a convolution in k—space:
si(k) = ¢(k) ® s(k), (2.15)

where the previous signals are the Fourier transform of those described in Eq.2.13. Therefore,
they assume that every point in k—space can be restored as a combination from its neighbours
weighted with a stationary kernel across k—space (see Fig.2.7), which is somehow related to

the sensitivity maps.

Therefore, GRAPPA reconstruction takes place directly in the k—space, where each point
in the missing lines is computed as an interpolation from its neighborhood n(k) in all the
coils (Griswold et al., 2002):

L
SlR(kj) = Z an(k - C) ’ wm(l7 C), (216)
m=1 cen(k)
where s (k) is the sampled k-space signal from coil m, w, (I, ¢) are the complex reconstruc-

tion weights for coil [, and sf(k) is the reconstructed k-space signal from coil I. The weights
wm(l,€) are usually calculated from a fully sampled low-frequency region in the k-space,
called the Auto Calibration Signal (ACS) lines (Griswold et al., 2002), which in turn is most
often collected during the accelerated scan, as illustrated in Fig.2.8. This is the reason why
GRAPPA is considered an autocalibrated approach.

In order to obtain the final image St (), it is necessary to combine the data from all the
channels Sf*(x) obtained by Fourier transformation of sf(z). This can be done using the
Sum of Squares (SoS) as in (Aja-Ferndndez et al., 2011), or using a properly weighted linear
combination as described by (Roemer et al., 1990). Complex imaging, as proposed by (Prah
et al., 2010; Eichner et al., 2015; Sprenger et al., 2016), provides certain advantages such as
avoiding noise floor effects or exploiting the information contained in the phase, as shown by
(Hernando et al., 2013; Ghugre et al., 2006) and it also preserves the gaussian behaviour in
the final image due to the linearity of the whole process. For these reasons, we chose this
type of linear coil-combination. Specifically, we have chosen the linear method proposed in
(Walsh et al., 2000), where the combination vector is computed to maximize the SNR ratio

in the final image, which is expressed as:

Sr(x) = m(z) - St(z) =S my(z) - SF(x), (2.17)

23



Chapter 2

subsampled

ACS lines
(fully sampled)

v

——
N
8

subsampled

Figure 2.8: Example of GRAPPA sampling pattern in order to include the ACS lines: the center of the k—
space is fully—sampled in order to estimate from this low—frequency region the weights used for reconstruction.
Figure obtained from (Aja Ferndndez and Vegas Sdanchez-Ferrero, 2016).

where m(x) = [my(x)---my(z)]" is a vector combining the information from each coil, and

the « dependence indicates that the operation is pixel-wise.

Noise amplification

One of the problems associated with PI is the resulting noise amplification caused by the image
reconstruction and the availability of fewer samples. In order to carry out a noise study, it is
a common assumption to model the data acquired across the L coils (k) = [s1(k) - - - sp(k)]

as in (Aja Ferndndez and Vegas Sanchez-Ferrero, 201