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Thinking about the problem



Noise in MR data: An aesthetic problem?

Diffusion tensor field over FA
Noise is one of the main sources of quality deterioration in
magnetic resonance (MR) data.
Is noise just a problem for “image quality" and visual inspection?
Affecting: segmentation, registration, tensor estimation...
In dMRI: noise and filtering may affect the estimation of direction
and amount of diffusion.

Laboratory of Image Processing (LPI) Noise and signal estimation 4 / 42



Noise in MR data: An aesthetic problem?

Diffusion tensor field over FA
Noise is one of the main sources of quality deterioration in
magnetic resonance (MR) data.
Is noise just a problem for “image quality" and visual inspection?
Affecting: segmentation, registration, tensor estimation...
In dMRI: noise and filtering may affect the estimation of direction
and amount of diffusion.

Laboratory of Image Processing (LPI) Noise and signal estimation 4 / 42



Noise in MR data: An aesthetic problem?

Diffusion tensor field over FA
Noise is one of the main sources of quality deterioration in
magnetic resonance (MR) data.
Is noise just a problem for “image quality" and visual inspection?
Affecting: segmentation, registration, tensor estimation...
In dMRI: noise and filtering may affect the estimation of direction
and amount of diffusion.

Laboratory of Image Processing (LPI) Noise and signal estimation 4 / 42



Noise in MR data: An aesthetic problem?

Diffusion tensor field over FA
Noise is one of the main sources of quality deterioration in
magnetic resonance (MR) data.
Is noise just a problem for “image quality" and visual inspection?
Affecting: segmentation, registration, tensor estimation...
In dMRI: noise and filtering may affect the estimation of direction
and amount of diffusion.

Laboratory of Image Processing (LPI) Noise and signal estimation 4 / 42



Noise in MR data: An aesthetic problem?

Diffusion tensor field over FA
Noise is one of the main sources of quality deterioration in
magnetic resonance (MR) data.
Is noise just a problem for “image quality" and visual inspection?
Affecting: segmentation, registration, tensor estimation...
In dMRI: noise and filtering may affect the estimation of direction
and amount of diffusion.

Laboratory of Image Processing (LPI) Noise and signal estimation 4 / 42



MR filtering

Original J-LMMSE LMMSE 15 UNLM

We can clean the images... is it enough in dMRI?
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Diffusion Tensor, real example

Diffusion tensor field over FA

Without filtering LMMSE filtered

Aja-Fernández et al., Oct. 2008. Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans. Med. Imaging 27 (10).
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Diffusion Tensor, real example
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Q-Balls imaging, real example

Comparison: Q-Balls, DOT, OPDT

Without LMMSE-N filteringWith LMMSE-N filtering
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Overview

Noise is known to be one of the main sources of quality
deterioration in magnetic resonance (MR) data.
We want to get rid of that noise but preserving the underlying
structures (very important in dMRI).
Accordingly:

1 Filtering methods based on data structure and modeling of noise
behavior. Bayesian and probabilistic modeling.

2 Quality assessment methods to test the goodness of proposed
algorithms.

3 Estimation of parameters out of data: variance of noise estimation.
4 Filtering and preprocessing: model based.

We are not inventing data or cleaning an image; we are estimating a
signal out of noisy data. Ideally: we are recovering the most likely or
possible signal based on the data we have.
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Formation of MR images (simple model)
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Areas in the image

Rician Area

Rayleigh Area
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Signal and noise statistical models in MR

Before Magnitude
k-space Complex Gaussian
x-space Complex Gaussian

Composite Magnitude Image
Number of
coils

Acquisition Statistical Model Stat. model of the
background

1 coil Single coil Rician Rayleigh
(Stationary)

Multiple coils No subsampling+ SoS Non-central Chi Central Chi
(Stationary)

Multiple coils pMRI+ SENSE Rician Rayleigh
(Non-Stationary)

Multiple coils pMRI+ GRAPPA+ SoS Non-central Chi Central Chi
(Non-Stationary,
effective parame-
ters)

For high SNR: always possible to use Gaussian assumption.
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Stationarity (brief, quick and intuitive)

Variance of noise

Stationary: same σ2
n value for every pixel.

Non-Stationary: σ2
n varies along the image.

Laboratory of Image Processing (LPI) Noise and signal estimation 15 / 42



Too many abstract
concepts...

Let’s go back to earth!
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The mambo jumbo: Eliminating the noise

Purpose: eliminate the noise in MR data without destroying any signal
information.

Basically: we want to improve the SNR of our data

In dMRI special attention to noise models: filtering may introduce bias.

Trade off between denoising and structure keeping

REMEMBER: We are not inventing data or cleaning an image; we are
estimating a signal out of noisy data. Ideally: we are recovering the most
likely or possible signal based on the data we have.
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Main filtering approaches

Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98]
(semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)

Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]

Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM
estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum
likelihood, ML, signal estimation), [AjaIP08], [AjaTMI08], [AjaMiccai07],
[TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared
Error, LMMSE, signal estimation).

Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM),
[Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).

Other methods: [Awate05] (Nonparametric Neighborhood Statistics),
[Nowak99], [Pizurica03] (Wavelets).

Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09]
(LMMSE and NLM taking into account information of all DWIs).
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Main filtering approaches

Method Comments Quality Time
N

o
m

od
el Anisotropic Diffusion Biased *** ***

Averaging Biased, smooth * *
NLM Biased **** ****

R
ic

ia
n Conventional Approach Smooth ** *

LMMSE Simple *** *
UNLM Bias corrected **** ****

ORNR-AD Bias corrected **** ***

D
W

I LMMSE-N Multiple DWI ***** **
UNLM-N Multiple DWI ***** *****

Alternative: filtering in the complex domain (scanner) using Gaussian model.
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Example: LMMSE Signal estimation

Signal estimation: the LMMSE estimator
LMSSE estimator:

θ̂ = E{θ}+CθxC−1
xx (x−E{x})

Rewriting for a 2D signal with a Rician distribution

Â2
ij = E{A2

ij}+CA2
ij M

2
ij
C−1

M2
ij M2

ij

(
M2

ij −E{M2
ij}
)

From here the estimator becomes:

Â2(x) = 〈M(x)2〉−2σ
2
n +K (x)

(
M2(x)−〈M(x)2〉

)
,

with

K (x) = 1−
4σ2

n
(
〈M(x)2〉−σ2

n
)

〈M(x)4〉−〈M(x)2〉2
.
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Examples: quality measures
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Noisy Data
AD
Wavelet
NLM
Koay
CA
NLCA
LMMSE
RLMMSE
SRNRAD
ORNRAD
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σ
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Q
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n
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σn = 15 σn = 20 σn = 25
SSIM QILV MSE SSIM QILV MSE SSIM QILV MSE

Noise 0.6567 0.8565 252.25 0.5565 0.7053 452.33 0.4812 0.5432 710.62
AD 0.8707 0.8087 115.30 0.8520 0.8041 160.86 0.8327 0.8051 229.59
Wavelet 0.8104 0.9680 124.44 0.7770 0.9469 166.67 0.7513 0.9202 214.50
NLM 0.9051 0.9365 68.98 0.8792 0.9210 115.87 0.8550 0.9029 184.62
Koay 0.8679 0.6673 153.81 0.8412 0.6483 228.84 0.8165 0.6276 336.86
CA 0.9139 0.7197 80.21 0.8924 0.7311 90.54 0.8676 0.7436 104.99
NLCA 0.9576 0.9577 29.86 0.9379 0.9581 38.11 0.9071 0.9586 52.16
LMMSE 0.8789 0.9841 72.40 0.8343 0.9731 104.33 0.7924 0.9590 140.16
RLMMSE 0.9303 0.9774 58.45 0.9118 0.9572 78.70 0.8961 0.9294 98.50
SRNRAD 0.9410 0.9859 46.83 0.9242 0.9777 61.40 0.9075 0.9677 75.96
ORNRAD 0.9603 0.9824 26.96 0.9432 0.9692 38.61 0.9251 0.9536 51.90
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Examples: color by orientation

Original UNLM-5 LMMSE-1 LMMSE-15
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Noise estimation

Many filtering methods require an estimation of σ2
n

(variance of noise).
Variance of noise can be measure of quality in the data.
Not only for filtering: Tensor estimation, segmentation
methods based on the Rician distribution and fiber
orientation estimators.
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What do we want to estimate?

Rician distribution:

pM(M|A,σn) =
M
σ2

n
e
−M2+A2

2σ2
n I0

(
AM
σ2

n

)
u(M),

Rayleigh distribution

pM(M|σn) =
M
σ2

n
e
− M2

2σ2
n u(M).

We want to estimate σ2
n , the variance of noise in the complex x-space:

C(x) = A(x)+N(x;σ2
n )

with
N(x,σ2

n ) = Nr (x;σ2
n )+ j ·Ni(x;σ2

n )
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How to estimate?

We define an estimator: usually related to
statistics of the image.
E.g.: Mean of the (Rayleigh) background

E{r}= σ

√
π

2

So we can define

σ =

√
2
π

E{r} → σ̂n =

√
2
π
〈M(xB)〉

Disadvantages: need of background
segmentation; assumption of uniform
background; sensitive to errors and artifacts.
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How to estimate? An example

(a) Second order moment

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

µ
2

3 x 3
7 x 7
11 x 11
21 x 21

(b) Sample mean

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 x 3
7 x 7
11 x 11
21 x 21

Using the mode of some distribution (most probable
value).

Distribution of sample second order moment of
Rayleigh data: Gamma distribution

S =
1
N

N

∑
i=1

R2
i (σ

2)∼ γ

(
N,

2σ2

N

)

with maximum in (N−1)/N ·2σ2
n .

So:

σ̂2
n =

N
N−1

· 1
2

mode{〈M2(x)〉} ≈ 1
2

mode{〈M2(x)〉}

Advantages: robust, not need of segmentation

Disadvantages: problems to calculate the mode,
artificial backgrounds.
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Estimators: an overview

55 1010 1515 2020 2525
00.98

0.050.99

0.11

0.151.01

0.21.02

0.251.03

0.31.04

0.351.05

0.41.06

0.451.07

0.51.08
Brummer
Chang
Sijbers
LS−M1
LS−M2
LS−M2 (sq)
ML−M2
ML−M2 (sq)
Max H
Mode M1
Mode M2
Mode M2 (sq)

b

Standard Deviation
σn σn

Mean

a

Methods estimating from global statistic of segmented background or selected area of the
background. (Rayleigh assumption)

Methods using the mode of the distribution of a local statistic. Robust and fast, no
segmentation needed. (Rayleigh assumption)

Methods matching a known distribution to a sample distribution (EM, ML, maximization or
certain parameter...). Robust, but recursive estimation.

Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.

Alternatively: estimating noise in the complex domain.
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Tensor fitting based on Weighted Least Squares

Estimation error for a simplified scenario [Tristan09]
The error (MSE) for multiple-coil is defined as

MSE'
[

K1
N

(
1

SNR2−
1

SNR4 (3L−4)
)]

︸ ︷︷ ︸
Var(estimation)

+

[
1

SNR4 3(L−1)2
]

︸ ︷︷ ︸
bias2(estimation)

Bias

Sta
nd

ar
d 

de
via

tio
n

Real Value

Measurement Measurement

Real Value

Real Value
Measurement
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Synthetic experiments

(a) Original (b) Rician

(c) pMRI-SoS (d) SENSE (e) GRAPPA
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Estimation tensor: Synthetic experiments
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Estimation tensor: Synthetic experiments
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Realistic DWI phantom

A realistic DWI phantom is used, [Tristan09b]. A 256×256×81 volume, spatial
resolution of 1mm× 1mm× 1.7mm, 15 gradient directions and 1 baseline.

[Tristan09b] A. Tristán-Vega and S. Aja-Fernández, “Design and construction of a realistic DWI phantom for filtering performance

assessment,” in MICCAI 2009, 2009.
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Realistic DWI phantom
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rMSE(x) =

√
(λ̂1(x)−λ1(x))2 +(λ̂2(x)−λ2(x))2 +(λ̂3(x)−λ3(x))2

λ1(x)
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Realistic DWI phantom

Fractional Anisotropy. From left to right: Original non-noisy data; Rician case;
pMRI-SoS case; SENSE case; GRAPPA case. Top row σn = 10 (average SNR in gray
matter in the gradient images 40). Low row: σn = 35 (average SNR in gray matter in
the gradient images 11.4).
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Pitfalls and conclusions

Pitfalls
Acquisition: reduced k-space and EPI introduces non-linearity that
make the signal differs from model.
Correlations must be taking into account.
Parallel acquisition: Non-stationary model. Is noise estimation
possible? Has it any meaning?

Conclusions
Noise affects not only the visual quality but the estimation of
diffusion parameters.
Knowing the underlying noise model helps to better filtering.
Proper noise estimation improves signal estimation (and noise
filtering).
Better to filter BEFORE estimation.
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Thanks for you attention!



Noise estimation and diffusion signal reconstruction:
From cradle to parallel imaging

What type of noise ‘infects’ the data and by filtering it out are we
(black) magically creating something new?

Santiago Aja-Fernández

Laboratory of Image Processing

L D EA B O R A T O R I O
P R O C E S A D O D E I M A G E N

Universidad de Valladolid
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Illustrations: David Aja
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