In this article, we present an automatic leaves image classification system for sunflower crops using neural networks, which could be used in selective herbicide applications. The system is comprised of four main stages. First, a segmentation based on rgb color space is performed. Second, many different features are detected and then extracted from the segmented image. Third, the most discriminable set of features are selected. Finally, the Generalized Softmax Perceptron (GSP) neural network architecture is used in conjunction with the recently proposed Posterior Probability Model Selection (PPMS) algorithm for complexity selection in order to select the leaves in an image and then classify them either as sunflower or non-sunflower. The experimental results show that the proposed system achieves a high level of accuracy with only five selected discriminative features obtaining an average Correct Classification Rate of 85\% and an area under the receiver operation curve over 90\%, for the test set. {\^A}{\textcopyright} 2011 Elsevier B.V.

}, keywords = {Classification rates, Computer vision, Crops, Discriminative features, Generalized softmax perceptron, Helianthus, Herbicide application, Herbicides, Image classification, Image classification systems, Leaf classification, Learning machines, Model selection, Network architecture, Neural networks, Posterior probability, RGB color space, Segmented images, Sunflower, Test sets, accuracy assessment, agricultural technology, algorithm, artificial neural network, automation, dicotyledon, experimental study, herbicide, segmentation}, issn = {01681699}, doi = {10.1016/j.compag.2011.05.007}, url = {https://www.sciencedirect.com/science/article/pii/S0168169911001220}, author = {J I Arribas and Gonzalo Vegas S{\'a}nchez-Ferrero and G Ruiz-Ruiz and Jaime Gomez-Gil} } @article {422, title = {A radius and ulna TW3 bone age assessment system}, journal = {IEEE Transactions on Biomedical Engineering}, volume = {55}, year = {2008}, pages = {1463-1476}, abstract = {An end-to-end system to automate the well-known Tanner - Whitehouse (TW3) clinical procedure to estimate the skeletal age in childhood is proposed. The system comprises the detailed analysis of the two most important bones in TW3: the radius and ulna wrist bones. First, a modified version of an adaptive clustering segmentation algorithm is presented to properly semi-automatically segment the contour of the bones. Second, up to 89 features are defined and extracted from bone contours and gray scale information inside the contour, followed by some well-founded feature selection mathematical criteria, based on the ideas of maximizing the classes{\textquoteright} separability. Third, bone age is estimated with the help of a Generalized Softmax Perceptron (GSP) neural network (NN) that, after supervised learning and optimal complexity estimation via the application of the recently developed Posterior Probability Model Selection (PPMS) algorithm, is able to accurately predict the different development stages in both radius and ulna from which and with the help of the TW3 methodology, we are able to conveniently score and estimate the bone age of a patient in years, in what can be understood as a multiple-class (multiple stages) pattern recognition approach with posterior probability estimation. Finally, numerical results are presented to evaluate the system performance in predicting the bone stages and the final patient bone age over a private hand image database, with the help of the pediatricians and the radiologists expert diagnoses. {\^A}{\textcopyright} 2006 IEEE.

}, keywords = {Age Determination by Skeleton, Aging, Algorithms, Artificial Intelligence, Automated, Bone, Bone age assessment, Clustering algorithms, Computer-Assisted, Humans, Model selection, Neural networks, Pattern recognition, Radiographic Image Interpretation, Reproducibility of Results, Sensitivity and Specificity, Skeletal maturity, algorithm, article, artificial neural network, automation, bone age, bone maturation, childhood, instrumentation, radius, ulna}, issn = {00189294}, doi = {10.1109/TBME.2008.918554}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-42249094547\&partnerID=40\&md5=2cecfea5f75a61b048611f2391b00aed}, author = {Antonio Trist{\'a}n-Vega and J I Arribas} } @article {420, title = {A model selection algorithm for a posteriori probability estimation with neural networks}, journal = {IEEE Transactions on Neural Networks}, volume = {16}, year = {2005}, pages = {799-809}, abstract = {This paper proposes a novel algorithm to jointly determine the structure and the parameters of a posteriori probability model based on neural networks (NNs). It makes use of well-known ideas of pruning, splitting, and merging neural components and takes advantage of the probabilistic interpretation of these components. The algorithm, so called a posteriori probability model selection (PPMS), is applied to an NN architecture called the generalized softmax perceptron (GSP) whose outputs can be understood as probabilities although results shown can be extended to more general network architectures. Learning rules are derived from the application of the expectation-maximization algorithm to the GSP-PPMS structure. Simulation results show the advantages of the proposed algorithm with respect to other schemes. {\^A}{\textcopyright} 2005 IEEE.

}, keywords = {Algorithms, Automated, Biological, Breast Neoplasms, Computer simulation, Computer-Assisted, Computing Methodologies, Decision Support Techniques, Diagnosis, Estimation, Expectation-maximization, Generalized Softmax Perceptron (GSP), Humans, Mathematical models, Model selection, Models, Neural Networks (Computer), Neural networks, Numerical Analysis, Objective function, Pattern recognition, Posterior probability, Probability, Statistical, Stochastic Processes, algorithm, article, artificial neural network, automated pattern recognition, biological model, breast tumor, classification, cluster analysis, computer analysis, computer assisted diagnosis, decision support system, evaluation, human, mathematical computing, methodology, statistical model, statistics}, issn = {10459227}, doi = {10.1109/TNN.2005.849826}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-23044459586\&partnerID=40\&md5=f00e7d86a625cfc466373a2a938276d0}, author = {J I Arribas and Jes{\'u}s Cid-Sueiro} } @conference {413, title = {Fusing Output Information in Neural Networks: Ensemble Performs Better}, booktitle = {Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings}, year = {2003}, address = {Cancun}, abstract = {A neural network ensemble is a learning paradigm where a finite number of component neural networks are trained for the same task. Previous research suggests that an ensemble as a whole is often more accurate than any of the single component networks. This paper focuses on the advantages of fusing different nature network architectures, and to determine the appropriate information fusion algorithm in component neural networks by several approaches within hard decision classifiers, when solving a binary pattern recognition problem. We numerically simulated and compared the different fusion approaches in terms of the mean-square error rate in testing data set, over synthetically generated binary Gaussian noisy data, and stated the advantages of fusing the hard outputs of different component networks to make a final hard decision classification. The results of the experiments indicate that neural network ensembles can indeed improve the overall accuracy for classification problems; in all fusion architectures tested, the ensemble correct classification rates are better than those achieved by the individual component networks. Finally we are nowadays comparing the above mentioned hard decision classifiers with new soft decision classifier architectures that make use of the additional continuous type intermediate network soft outputs, fulfilling probability fundamental laws (positive, and add to unity), which can be understood as the a posteriori probabilities of a given pattern to belong to a certain class.

}, keywords = {Algorithms, Backpropagation, Classification (of information), Computer simulation, Decision making, Estimation, Gaussian noise (electronic), Information fusions, Mathematical models, Medical imaging, Model selection, Multilayer neural networks, Neural network ensembles, Pattern recognition, Probability, Probability estimation, Problem solving, Regularization, Statistical methods, Statistical pattern recognition, Vectors}, doi = {https://doi.org/10.1109/IEMBS.2003.1280254}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-1542301061\&partnerID=40\&md5=32dbadb3b6ac3c6ae1ea33d89b52c75f}, author = {Y Wu and J I Arribas} }