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Abstract

Least Squares (LS) and its weighted version are standard techniques to estimate the Diffu-
sion Tensor (DT) from Diffusion Weighted Images (DWI). They require to linearize the problem
by computing the logarithm of the DWI. For the single-coil Rician noise model it has been
shown that this model does not introduce a significant bias, but for multiple array coils and
parallel imaging, the noise cannot longer be modeled as Rician. As a result the validity of LS
approaches is not assured. An analytical study of noise statistics for a multiple coil system
is carried out, together with the Weighted LS formulation and noise analysis for this model.
Results show that the bias in the computation of the components of the DT may be compara-
ble to their variance in many cases, stressing the importance of unbiased filtering previous
to DT estimation.

Statistics of noise in the log–domain
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After simplification, bias and variance:
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Tensor fitting based on Weighted Least Squares

Estimation of the DT coefficients as a WLS problem:
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with W = diag(Wii). We will fix:
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1. Formulation identical to the traditional WLS for Rician noise.
2. The weights Wii are proportional to 2ai ⇒ not necessary to know the value of σ .

Variance and bias on the tensor components

Variance and bias using the simplifications:
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with e1 vector of 1’s

The error (MSE) is defined as
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Results and discussion

Simplified scenario with ai = a
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Left: bias and variance in the DWI signals as a function of a for different num-
bers of coils; we represent true and empirically computed values together with
our approximations. Right: minimum number of receiving coils required (for
each a and N) so that the (squared) bias equals the variance in the DT compo-
nents

0 0.2 0.40 0.60.2 0.80.4 10.6

2.8

0.8

3

1

3.2

2.8

3.4

3

3.6

3.2

3.4

3.6

3.8

4

4.2

Fractional Anisotropy

M
ax

im
um

 v
al

ue
 o

f l
og

4.4

10
(a

0)

Fractional Anisotropy

M
ax

im
um

 v
al

ue
 o

f l
og

10

N=51

(a

N=27

0) N=15

N=51
N=27
N=15

OblateProlate

Log–plot of the maximum value of a0 = LA2
0/2σ2 which makes the squared

bias equal to the variance in the components of the DT for different tensor
shapes. We show minimum, mean and maximum values among all possible
tensor orientations. Typical values are used: L = 8, N = 15, 27, and 51, b =
1500s/mm2, and Mean Diffusivity (MD) 0.8 ·10−3mm2/s.

Conclusions

I The impact of the bias in Rician signals for WLS tensor–fitting is quite small in
realistic cases; on the contrary, for non–central χ distributed signals, the bias may
be an important source of error, (growing with the number of receiving coils).

I While the variance in the estimation may be reduced increasing the number of
gradient directions, this is not the case for the bias. In some cases, increasing
the number of gradients will not improve the estimation, since the main source of
error will be the bias and not the variance. In these cases, it may be preferable to
improve the SNR by increasing NEX.

I The traditional WLS approach is not optimal for non–central χ signals, since the
weights commonly used are not those yielding minimum variance; although we
have proposed a modification to avoid this problem, it makes necessary to char-
acterize the noise power for all image voxels.
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